--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_replace_w2v results: [] --- # PhoBERT-Final_Mixed-aug_replace_w2v This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9771 - Accuracy: 0.73 - F1: 0.7251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9504 | 1.0 | 86 | 0.7392 | 0.65 | 0.6205 | | 0.6517 | 2.0 | 172 | 0.7087 | 0.69 | 0.6783 | | 0.4998 | 3.0 | 258 | 0.7396 | 0.69 | 0.6788 | | 0.3663 | 4.0 | 344 | 0.7976 | 0.69 | 0.6714 | | 0.2623 | 5.0 | 430 | 0.8181 | 0.72 | 0.7177 | | 0.1751 | 6.0 | 516 | 0.8604 | 0.75 | 0.7498 | | 0.1446 | 7.0 | 602 | 0.9600 | 0.72 | 0.7135 | | 0.1061 | 8.0 | 688 | 0.9771 | 0.73 | 0.7251 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3