--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-train-1 results: [] --- # PhoBERT-Final_Mixed-train-1 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8720 - Accuracy: 0.71 - F1: 0.7085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 41 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0125 | 1.0 | 44 | 0.8552 | 0.63 | 0.5142 | | 0.7443 | 2.0 | 88 | 0.6888 | 0.7 | 0.6941 | | 0.5851 | 3.0 | 132 | 0.6873 | 0.72 | 0.7164 | | 0.4457 | 4.0 | 176 | 0.7423 | 0.7 | 0.7021 | | 0.374 | 5.0 | 220 | 0.7960 | 0.71 | 0.7019 | | 0.2885 | 6.0 | 264 | 0.8073 | 0.7 | 0.7016 | | 0.2711 | 7.0 | 308 | 0.8329 | 0.71 | 0.7088 | | 0.2317 | 8.0 | 352 | 0.8720 | 0.71 | 0.7085 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3