--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-train-aug_insert_BERT results: [] --- # PhoBERT-train-aug_insert_BERT This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1962 - Accuracy: 0.72 - F1: 0.7303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8879 | 1.0 | 87 | 0.7145 | 0.68 | 0.6453 | | 0.586 | 2.0 | 174 | 0.6479 | 0.72 | 0.7265 | | 0.3982 | 3.0 | 261 | 0.7353 | 0.72 | 0.7292 | | 0.2815 | 4.0 | 348 | 0.8297 | 0.71 | 0.7152 | | 0.2042 | 5.0 | 435 | 0.9852 | 0.71 | 0.7197 | | 0.1438 | 6.0 | 522 | 1.0917 | 0.71 | 0.7198 | | 0.1327 | 7.0 | 609 | 1.1657 | 0.72 | 0.7303 | | 0.1016 | 8.0 | 696 | 1.1962 | 0.72 | 0.7303 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3