--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-train-aug_insert_w2v results: [] --- # PhoBERT-train-aug_insert_w2v This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2218 - Accuracy: 0.71 - F1: 0.7185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.861 | 1.0 | 85 | 0.7003 | 0.71 | 0.6826 | | 0.532 | 2.0 | 170 | 0.6556 | 0.73 | 0.7305 | | 0.361 | 3.0 | 255 | 0.7729 | 0.74 | 0.7346 | | 0.2421 | 4.0 | 340 | 0.9271 | 0.65 | 0.6591 | | 0.177 | 5.0 | 425 | 1.0259 | 0.71 | 0.7199 | | 0.1242 | 6.0 | 510 | 1.2122 | 0.68 | 0.6905 | | 0.093 | 7.0 | 595 | 1.2365 | 0.68 | 0.6889 | | 0.0886 | 8.0 | 680 | 1.2218 | 0.71 | 0.7185 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3