--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_Mixed-aug_backtranslation results: [] --- # xlm-roberta-base-Balance_Mixed-aug_backtranslation This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4382 - Accuracy: 0.72 - F1: 0.7219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9831 | 1.0 | 174 | 0.9044 | 0.61 | 0.5474 | | 0.7797 | 2.0 | 348 | 0.6469 | 0.73 | 0.7378 | | 0.6314 | 3.0 | 522 | 0.6261 | 0.76 | 0.7619 | | 0.4976 | 4.0 | 696 | 0.8230 | 0.72 | 0.7177 | | 0.3719 | 5.0 | 870 | 1.0086 | 0.72 | 0.7223 | | 0.2816 | 6.0 | 1044 | 1.3198 | 0.72 | 0.7208 | | 0.2772 | 7.0 | 1218 | 1.3510 | 0.71 | 0.7099 | | 0.2076 | 8.0 | 1392 | 1.4382 | 0.72 | 0.7219 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3