--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_insert_synonym-1 results: [] --- # xlm-roberta-base-Final_Mixed-aug_insert_synonym-1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1442 - Accuracy: 0.74 - F1: 0.7298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 41 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0022 | 1.0 | 88 | 0.7751 | 0.7 | 0.6764 | | 0.7565 | 2.0 | 176 | 0.7416 | 0.67 | 0.6181 | | 0.6017 | 3.0 | 264 | 0.6780 | 0.72 | 0.7105 | | 0.4341 | 4.0 | 352 | 0.6895 | 0.77 | 0.7620 | | 0.3477 | 5.0 | 440 | 0.7465 | 0.76 | 0.7535 | | 0.2429 | 6.0 | 528 | 0.9202 | 0.73 | 0.7207 | | 0.1659 | 7.0 | 616 | 1.1246 | 0.74 | 0.7267 | | 0.1623 | 8.0 | 704 | 1.1442 | 0.74 | 0.7298 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3