File size: 1,942 Bytes
97e6111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ef64b
 
 
97e6111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ef64b
97e6111
 
 
 
 
 
 
 
07ef64b
 
 
 
 
 
 
 
97e6111
 
 
 
07ef64b
97e6111
07ef64b
97e6111
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-base-Final_Mixed-aug_insert_w2v-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-Final_Mixed-aug_insert_w2v-1

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3222
- Accuracy: 0.75
- F1: 0.7494

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 41
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.9974        | 1.0   | 86   | 0.7220          | 0.7      | 0.6853 |
| 0.6771        | 2.0   | 172  | 0.5830          | 0.75     | 0.7414 |
| 0.4881        | 3.0   | 258  | 0.7321          | 0.73     | 0.7233 |
| 0.3431        | 4.0   | 344  | 0.8026          | 0.76     | 0.7555 |
| 0.2209        | 5.0   | 430  | 0.9511          | 0.75     | 0.7443 |
| 0.1558        | 6.0   | 516  | 1.2518          | 0.72     | 0.7046 |
| 0.1311        | 7.0   | 602  | 1.2975          | 0.74     | 0.7397 |
| 0.1027        | 8.0   | 688  | 1.3222          | 0.75     | 0.7494 |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3