--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_insert_w2v-1 results: [] --- # xlm-roberta-base-Final_Mixed-aug_insert_w2v-1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3222 - Accuracy: 0.75 - F1: 0.7494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 41 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9974 | 1.0 | 86 | 0.7220 | 0.7 | 0.6853 | | 0.6771 | 2.0 | 172 | 0.5830 | 0.75 | 0.7414 | | 0.4881 | 3.0 | 258 | 0.7321 | 0.73 | 0.7233 | | 0.3431 | 4.0 | 344 | 0.8026 | 0.76 | 0.7555 | | 0.2209 | 5.0 | 430 | 0.9511 | 0.75 | 0.7443 | | 0.1558 | 6.0 | 516 | 1.2518 | 0.72 | 0.7046 | | 0.1311 | 7.0 | 602 | 1.2975 | 0.74 | 0.7397 | | 0.1027 | 8.0 | 688 | 1.3222 | 0.75 | 0.7494 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3