--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_replace_synonym-1 results: [] --- # xlm-roberta-base-Final_Mixed-aug_replace_synonym-1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8727 - Accuracy: 0.76 - F1: 0.7592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 41 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0219 | 1.0 | 87 | 0.7346 | 0.68 | 0.6276 | | 0.7518 | 2.0 | 174 | 0.5934 | 0.75 | 0.7425 | | 0.6023 | 3.0 | 261 | 0.7553 | 0.7 | 0.6975 | | 0.479 | 4.0 | 348 | 0.7275 | 0.72 | 0.7118 | | 0.3515 | 5.0 | 435 | 0.9068 | 0.74 | 0.7306 | | 0.2646 | 6.0 | 522 | 0.7953 | 0.77 | 0.7633 | | 0.2123 | 7.0 | 609 | 0.8673 | 0.77 | 0.7652 | | 0.1535 | 8.0 | 696 | 0.8727 | 0.76 | 0.7592 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3