--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_replace_synonym-1 results: [] --- # xlm-roberta-base-Final_Mixed-aug_replace_synonym-1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9852 - Accuracy: 0.74 - F1: 0.7369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0471 | 1.0 | 87 | 0.9289 | 0.64 | 0.5512 | | 0.9553 | 2.0 | 174 | 0.7912 | 0.64 | 0.5672 | | 0.7049 | 3.0 | 261 | 0.6276 | 0.75 | 0.7341 | | 0.5556 | 4.0 | 348 | 0.7291 | 0.74 | 0.7291 | | 0.435 | 5.0 | 435 | 0.6930 | 0.72 | 0.7163 | | 0.3534 | 6.0 | 522 | 0.8526 | 0.74 | 0.7369 | | 0.2774 | 7.0 | 609 | 0.9620 | 0.73 | 0.7259 | | 0.2152 | 8.0 | 696 | 0.9852 | 0.74 | 0.7369 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3