File size: 1,956 Bytes
d01b846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-base-Final_VietNam-aug_replace_synonym-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-Final_VietNam-aug_replace_synonym-1

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0663
- Accuracy: 0.69
- F1: 0.6982

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.0809        | 1.0   | 86   | 1.0198          | 0.5      | 0.4206 |
| 0.7967        | 2.0   | 172  | 0.7866          | 0.62     | 0.6178 |
| 0.5958        | 3.0   | 258  | 0.7556          | 0.7      | 0.6975 |
| 0.4574        | 4.0   | 344  | 0.8233          | 0.66     | 0.6653 |
| 0.3242        | 5.0   | 430  | 0.8224          | 0.7      | 0.7039 |
| 0.2399        | 6.0   | 516  | 0.9593          | 0.7      | 0.7099 |
| 0.1898        | 7.0   | 602  | 1.0689          | 0.7      | 0.7097 |
| 0.1665        | 8.0   | 688  | 1.0663          | 0.69     | 0.6982 |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3