--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Mixed-aug_insert_vi results: [] --- # xlm-roberta-base-Mixed-aug_insert_vi This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5693 - Accuracy: 0.81 - F1: 0.7858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9098 | 1.0 | 82 | 0.6306 | 0.75 | 0.7083 | | 0.6867 | 2.0 | 164 | 0.7511 | 0.77 | 0.7175 | | 0.5754 | 3.0 | 246 | 0.5041 | 0.82 | 0.7719 | | 0.4309 | 4.0 | 328 | 0.5971 | 0.8 | 0.7754 | | 0.3739 | 5.0 | 410 | 0.5693 | 0.81 | 0.7858 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3