--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-VietNam-aug_swap results: [] --- # xlm-roberta-base-VietNam-aug_swap This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4414 - Accuracy: 0.82 - F1: 0.7953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9739 | 1.0 | 84 | 0.9310 | 0.58 | 0.4258 | | 0.8154 | 2.0 | 168 | 0.6682 | 0.74 | 0.6992 | | 0.6062 | 3.0 | 252 | 0.4572 | 0.85 | 0.8001 | | 0.4499 | 4.0 | 336 | 0.4852 | 0.83 | 0.7848 | | 0.392 | 5.0 | 420 | 0.4414 | 0.82 | 0.7953 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3