File size: 3,968 Bytes
61bd818 1a83db9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: cc-by-sa-4.0
---
# Compare-Answer Model
Welcome to the repository for the Compare-Answer Model, an innovative tool designed to enhance the accuracy and efficiency of mathematical answer comparison tasks. This model leverages advanced techniques to provide precise comparisons across a wide range of mathematical problems.
## Features
- **High Accuracy**: Utilizes state-of-the-art technology to ensure high reliability in answer comparison.
- **Broad Compatibility**: Supports a variety of mathematical problem types and formats.
- **Easy Integration**: Designed for easy integration with existing systems and workflows.
## Installation
To get started with the Compare-Answer Model, clone this repository and load model with Transformers.
# Quick Start
To use the model, import it and call the main comparison function with the required parameters:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype="auto", device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
def build_user_query(question, pred_answer, answer, base_prompt):
input_text = base_prompt.replace("{{question}}", question)
input_text = input_text.replace("{{pred_step}}", pred_answer)
input_text = input_text.replace("{{answer}}", answer)
input_text = input_text.replace("{{analysis}}", "") # default set analysis to blank, if exist, you can pass in the corresponding parameter.
return input_text
chat_prompt = """<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>human
{}<|im_end|>
<|im_start|>gpt
"""
basic_prompt = """## 任务描述\n\n你是一个数学老师,学生提交了题目的解题步骤,你需要参考`题干`,`解析`和`答案`,判断`学生解题步骤`的结果是否正确。忽略`学生解题步骤`中的错误,只关注最后的答案。答案可能出现在`解析`中,也可能出现在`答案`中。\n\n## 输入内容\n\n题干:\n\n```\n{{question}}\n```\n\n解析:\n\n```\n{{analysis}}\n\n```\n\n答案:\n\n```\n{{answer}}\n```\n\n学生解题步骤:\n\n```\n{{pred_step}}\n```\n\n输出:"""
base_prompt = chat_prompt.format(basic_prompt)
def build_user_query(question, pred_answer, answer, base_prompt):
input_text = base_prompt.replace("{{question}}", question)
input_text = input_text.replace("{{pred_step}}", pred_answer)
input_text = input_text.replace("{{answer}}", answer)
input_text = input_text.replace("{{analysis}}", "") # default set analysis to blank, if exist, you can pass in the corresponding parameter.
return input_text
prompt = build_user_query("1+1=", "3", "2", base_prompt)
model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs.input_ids, temperature=0, max_new_tokens=16, eos_token_id=100005)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)[0]
```
## Documentation
For more detailed information about the model's API and functionalities, please contact us.
# Contributing
Contributions to the Compare-Answer Model are welcome! If you have suggestions or improvements, please fork the repository and submit a pull request.
# License
This project is licensed under the MIT License - see the LICENSE.md file for details.
# Acknowledgements
Thanks to all contributors who have helped in developing this model.
Special thanks to MathEval for providing the datasets and challenges that inspired this project.
# Contact
For any inquiries, please reach out via email at liutianqiao1@tal.com or open an issue in this repository.
Thank you for using or contributing to the Compare-Answer Model! |