|
import logging |
|
from typing import Any, Dict |
|
|
|
import torch.cuda |
|
from peft import PeftConfig, PeftModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
|
LOGGER = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
config = PeftConfig.from_pretrained(path) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
load_in_8bit=True, |
|
trust_remote_code=True, |
|
device_map="auto" |
|
) |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
config.base_model_name_or_path, trust_remote_code=True) |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
|
|
self.model = PeftModel.from_pretrained(model, path, torch_dtype=model.dtype) |
|
self.model.eos_token_id = self.tokenizer.eos_token_id |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
""" |
|
Args: |
|
data (Dict): The payload with the text prompt and generation parameters. |
|
""" |
|
LOGGER.info(f"Received data: {data}") |
|
|
|
prompt = data.pop("inputs", None) |
|
parameters = data.pop("parameters", None) |
|
if prompt is None: |
|
raise ValueError("Missing prompt.") |
|
|
|
encoding = self.tokenizer( |
|
prompt, return_tensors="pt") |
|
input_ids = encoding.input_ids.to(device) |
|
attention_mask = encoding.attention_mask |
|
|
|
LOGGER.info(f"Start generation.") |
|
if parameters is not None: |
|
output = self.model.generate( |
|
input_ids=input_ids, attention_mask=attention_mask, **parameters) |
|
LOGGER.info("Parameters have been giving for model generation") |
|
else: |
|
output = self.model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_new_tokens=256, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
pad_token_id=self.tokenizer.eos_token_id, |
|
) |
|
LOGGER.info("Parameters have not been giving for model generation") |
|
|
|
|
|
prediction = self.tokenizer.decode(output[0], skip_special_tokens=True) |
|
LOGGER.info(f"Generated text: {prediction}") |
|
|
|
return [{"generated_text": prediction}] |
|
|