File size: 2,271 Bytes
504ee74
 
 
 
 
 
9bd37ec
 
 
 
 
504ee74
 
9bd37ec
 
 
 
 
 
 
 
 
 
 
 
 
e77bf94
9bd37ec
 
e77bf94
9bd37ec
 
e77bf94
9bd37ec
 
e77bf94
504ee74
 
 
 
 
 
 
 
9bd37ec
e77bf94
 
 
 
 
504ee74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd37ec
504ee74
 
 
 
 
e77bf94
 
 
504ee74
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- rotten_tomatoes_movie_review
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: my_distilbert_model
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: rotten_tomatoes_movie_review
      type: rotten_tomatoes_movie_review
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8395872420262664
    - name: F1
      type: f1
      value: 0.8395554737965957
    - name: Precision
      type: precision
      value: 0.8398564101118846
    - name: Recall
      type: recall
      value: 0.8395872420262664
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_distilbert_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes_movie_review dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4438
- Accuracy: 0.8396
- F1: 0.8396
- Precision: 0.8399
- Recall: 0.8396

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 267  | 0.4091          | 0.8236   | 0.8232 | 0.8270    | 0.8236 |
| 0.3608        | 2.0   | 534  | 0.3945          | 0.8405   | 0.8405 | 0.8406    | 0.8405 |
| 0.3608        | 3.0   | 801  | 0.4438          | 0.8396   | 0.8396 | 0.8399    | 0.8396 |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3