File size: 3,224 Bytes
e209701
 
 
 
 
 
060ba85
 
e209701
060ba85
e209701
 
 
 
 
 
 
 
 
 
 
 
 
060ba85
 
271d883
060ba85
 
271d883
e209701
 
271d883
060ba85
 
271d883
874c5b1
 
e209701
 
 
 
 
 
c0e63d0
e209701
c0e63d0
 
 
e209701
874c5b1
e209701
874c5b1
e209701
874c5b1
e209701
874c5b1
 
 
e209701
b374b36
 
e209701
874c5b1
 
e209701
874c5b1
 
 
e209701
c0e63d0
 
 
 
 
 
 
 
 
 
e209701
 
 
 
 
 
 
 
 
271d883
e209701
 
 
060ba85
 
271d883
 
 
 
 
e209701
 
 
 
 
 
 
874c5b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: mit
base_model: xlm-roberta-base
datasets:
- xtreme
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-base-NER
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: xtreme
      type: xtreme
      config: PAN-X.en
      split: validation
      args: PAN-X.en
    metrics:
    - name: Precision
      type: precision
      value: 0.8003614625330182
    - name: Recall
      type: recall
      value: 0.8110735418427726
    - name: F1
      type: f1
      value: 0.8056818976978517
    - name: Accuracy
      type: accuracy
      value: 0.9194332683336213
language:
- en
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-NER
## Model description

**xlm-roberta-base-multilingual-cased-ner** is a **Named Entity Recognition** model based on a fine-tuned XLM-RoBERTa base model. 
It has been trained to recognize three types of entities: location (LOC), organizations (ORG), and person (PER). 
Specifically, this model is a *XLMRoreberta-base-multilingual-cased* model that was fine-tuned on an aggregation of 10 high-resourced languages.

## Intended uses & limitations

#### How to use

You can use this model with Transformers *pipeline* for NER.

```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("Tirendaz/multilingual-xlm-roberta-for-ner")
model = AutoModelForTokenClassification.from_pretrained("Tirendaz/multilingual-xlm-roberta-for-ner")

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Wolfgang and I live in Berlin"

ner_results = nlp(example)
print(ner_results)
```

Abbreviation|Description
-|-
O|Outside of a named entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 417  | 0.3359          | 0.7286    | 0.7675 | 0.7476 | 0.8991   |
| 0.4227        | 2.0   | 834  | 0.2951          | 0.7711    | 0.7980 | 0.7843 | 0.9131   |
| 0.2818        | 3.0   | 1251 | 0.2824          | 0.7852    | 0.8076 | 0.7962 | 0.9174   |
| 0.2186        | 4.0   | 1668 | 0.2853          | 0.7934    | 0.8150 | 0.8041 | 0.9193   |
| 0.1801        | 5.0   | 2085 | 0.2935          | 0.8004    | 0.8111 | 0.8057 | 0.9194   |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3