--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: multibert1110_lrate7.5b8 results: [] --- # multibert1110_lrate7.5b8 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6124 - Precisions: 0.8795 - Recall: 0.7898 - F-measure: 0.8228 - Accuracy: 0.9026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.6395 | 1.0 | 471 | 0.4532 | 0.8345 | 0.6789 | 0.6899 | 0.8619 | | 0.3636 | 2.0 | 942 | 0.3956 | 0.8284 | 0.7491 | 0.7766 | 0.8853 | | 0.2471 | 3.0 | 1413 | 0.5037 | 0.8053 | 0.6950 | 0.7258 | 0.8821 | | 0.1785 | 4.0 | 1884 | 0.5098 | 0.8444 | 0.7522 | 0.7755 | 0.8936 | | 0.1279 | 5.0 | 2355 | 0.5574 | 0.8751 | 0.7735 | 0.8077 | 0.8973 | | 0.097 | 6.0 | 2826 | 0.6124 | 0.8795 | 0.7898 | 0.8228 | 0.9026 | | 0.071 | 7.0 | 3297 | 0.5377 | 0.8621 | 0.7836 | 0.8157 | 0.9044 | | 0.0494 | 8.0 | 3768 | 0.5842 | 0.8705 | 0.7725 | 0.8109 | 0.9029 | | 0.0344 | 9.0 | 4239 | 0.6835 | 0.8705 | 0.7506 | 0.7912 | 0.9010 | | 0.0276 | 10.0 | 4710 | 0.6916 | 0.8226 | 0.7864 | 0.7999 | 0.9048 | | 0.0174 | 11.0 | 5181 | 0.7412 | 0.8646 | 0.7491 | 0.7905 | 0.8994 | | 0.0112 | 12.0 | 5652 | 0.7701 | 0.8258 | 0.7647 | 0.7866 | 0.9018 | | 0.0084 | 13.0 | 6123 | 0.7811 | 0.8331 | 0.7593 | 0.7899 | 0.9058 | | 0.0063 | 14.0 | 6594 | 0.7682 | 0.8636 | 0.7763 | 0.8112 | 0.9064 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1