Upload NER_medNLP.py
Browse files- NER_medNLP.py +238 -0
NER_medNLP.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
|
3 |
+
import itertools
|
4 |
+
from tqdm import tqdm
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from transformers import BertJapaneseTokenizer, BertForTokenClassification
|
8 |
+
import pytorch_lightning as pl
|
9 |
+
|
10 |
+
# from torch.utils.data import DataLoader
|
11 |
+
# import from_XML_to_json as XtC
|
12 |
+
# import random
|
13 |
+
# import json
|
14 |
+
# import unicodedata
|
15 |
+
# import pandas as pd
|
16 |
+
|
17 |
+
# %%
|
18 |
+
# 8-16
|
19 |
+
# PyTorch Lightningのモデル
|
20 |
+
class BertForTokenClassification_pl(pl.LightningModule):
|
21 |
+
|
22 |
+
def __init__(self, model_name, num_labels, lr):
|
23 |
+
super().__init__()
|
24 |
+
self.save_hyperparameters()
|
25 |
+
self.bert_tc = BertForTokenClassification.from_pretrained(
|
26 |
+
model_name,
|
27 |
+
num_labels=num_labels
|
28 |
+
)
|
29 |
+
|
30 |
+
def training_step(self, batch, batch_idx):
|
31 |
+
output = self.bert_tc(**batch)
|
32 |
+
loss = output.loss
|
33 |
+
self.log('train_loss', loss)
|
34 |
+
return loss
|
35 |
+
|
36 |
+
def validation_step(self, batch, batch_idx):
|
37 |
+
output = self.bert_tc(**batch)
|
38 |
+
val_loss = output.loss
|
39 |
+
self.log('val_loss', val_loss)
|
40 |
+
|
41 |
+
def configure_optimizers(self):
|
42 |
+
return torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
# %%
|
47 |
+
class NER_tokenizer_BIO(BertJapaneseTokenizer):
|
48 |
+
|
49 |
+
# 初期化時に固有表現のカテゴリーの数`num_entity_type`を
|
50 |
+
# 受け入れるようにする。
|
51 |
+
def __init__(self, *args, **kwargs):
|
52 |
+
self.num_entity_type = kwargs.pop('num_entity_type')
|
53 |
+
super().__init__(*args, **kwargs)
|
54 |
+
|
55 |
+
def encode_plus_tagged(self, text, entities, max_length):
|
56 |
+
"""
|
57 |
+
文章とそれに含まれる固有表現が与えられた時に、
|
58 |
+
符号化とラベル列の作成を行う。
|
59 |
+
"""
|
60 |
+
# 固有表現の前後でtextを分割し、それぞれのラベルをつけておく。
|
61 |
+
splitted = [] # 分割後の文字列を追加していく
|
62 |
+
position = 0
|
63 |
+
|
64 |
+
for entity in entities:
|
65 |
+
start = entity['span'][0]
|
66 |
+
end = entity['span'][1]
|
67 |
+
label = entity['type_id']
|
68 |
+
splitted.append({'text':text[position:start], 'label':0})
|
69 |
+
splitted.append({'text':text[start:end], 'label':label})
|
70 |
+
position = end
|
71 |
+
splitted.append({'text': text[position:], 'label':0})
|
72 |
+
splitted = [ s for s in splitted if s['text'] ]
|
73 |
+
|
74 |
+
# 分割されたそれぞれの文章をトークン化し、ラベルをつける。
|
75 |
+
tokens = [] # トークンを追加していく
|
76 |
+
labels = [] # ラベルを追加していく
|
77 |
+
for s in splitted:
|
78 |
+
tokens_splitted = self.tokenize(s['text'])
|
79 |
+
label = s['label']
|
80 |
+
if label > 0: # 固有表現
|
81 |
+
# まずトークン全てにI-タグを付与
|
82 |
+
# 番号順O-tag:0, B-tag:1~タグの数,I-tag:タグの数〜
|
83 |
+
labels_splitted = \
|
84 |
+
[ label + self.num_entity_type ] * len(tokens_splitted)
|
85 |
+
# 先頭のトークンをB-タグにする
|
86 |
+
labels_splitted[0] = label
|
87 |
+
else: # それ以外
|
88 |
+
labels_splitted = [0] * len(tokens_splitted)
|
89 |
+
|
90 |
+
tokens.extend(tokens_splitted)
|
91 |
+
labels.extend(labels_splitted)
|
92 |
+
|
93 |
+
# 符号化を行いBERTに入力できる形式にする。
|
94 |
+
input_ids = self.convert_tokens_to_ids(tokens)
|
95 |
+
encoding = self.prepare_for_model(
|
96 |
+
input_ids,
|
97 |
+
max_length=max_length,
|
98 |
+
padding='max_length',
|
99 |
+
truncation=True
|
100 |
+
)
|
101 |
+
|
102 |
+
# ラベルに特殊トークンを追加
|
103 |
+
# max_lengthで切り取って,その前後に[CLS]と[SEP]を追加するためのラベルを入れる
|
104 |
+
labels = [0] + labels[:max_length-2] + [0]
|
105 |
+
# max_lengthに満たない場合は,満たない分を後ろ側に追加する
|
106 |
+
labels = labels + [0]*( max_length - len(labels) )
|
107 |
+
encoding['labels'] = labels
|
108 |
+
|
109 |
+
return encoding
|
110 |
+
|
111 |
+
def encode_plus_untagged(
|
112 |
+
self, text, max_length=None, return_tensors=None
|
113 |
+
):
|
114 |
+
"""
|
115 |
+
文章をトークン化し、それぞれのトークンの文章中の位置も特定しておく。
|
116 |
+
IO法のトークナイザのencode_plus_untaggedと同じ
|
117 |
+
"""
|
118 |
+
# 文章のトークン化を行い、
|
119 |
+
# それぞれのトークンと文章中の文字列を対応づける。
|
120 |
+
tokens = [] # トークンを追加していく。
|
121 |
+
tokens_original = [] # トークンに対応する文章中の文字列を追加していく。
|
122 |
+
words = self.word_tokenizer.tokenize(text) # MeCabで単語に分割
|
123 |
+
for word in words:
|
124 |
+
# 単語をサブワードに分割
|
125 |
+
tokens_word = self.subword_tokenizer.tokenize(word)
|
126 |
+
tokens.extend(tokens_word)
|
127 |
+
if tokens_word[0] == '[UNK]': # 未知語への対応
|
128 |
+
tokens_original.append(word)
|
129 |
+
else:
|
130 |
+
tokens_original.extend([
|
131 |
+
token.replace('##','') for token in tokens_word
|
132 |
+
])
|
133 |
+
|
134 |
+
# 各トークンの文章中での位置を調べる。(空白の位置を考慮する)
|
135 |
+
position = 0
|
136 |
+
spans = [] # トークンの位置を追加していく。
|
137 |
+
for token in tokens_original:
|
138 |
+
l = len(token)
|
139 |
+
while 1:
|
140 |
+
if token != text[position:position+l]:
|
141 |
+
position += 1
|
142 |
+
else:
|
143 |
+
spans.append([position, position+l])
|
144 |
+
position += l
|
145 |
+
break
|
146 |
+
|
147 |
+
# 符号化を行いBERTに入力できる形式にする。
|
148 |
+
input_ids = self.convert_tokens_to_ids(tokens)
|
149 |
+
encoding = self.prepare_for_model(
|
150 |
+
input_ids,
|
151 |
+
max_length=max_length,
|
152 |
+
padding='max_length' if max_length else False,
|
153 |
+
truncation=True if max_length else False
|
154 |
+
)
|
155 |
+
sequence_length = len(encoding['input_ids'])
|
156 |
+
# 特殊トークン[CLS]に対するダミーのspanを追加。
|
157 |
+
spans = [[-1, -1]] + spans[:sequence_length-2]
|
158 |
+
# 特殊トークン[SEP]、[PAD]に対するダミーのspanを追加。
|
159 |
+
spans = spans + [[-1, -1]] * ( sequence_length - len(spans) )
|
160 |
+
|
161 |
+
# 必要に応じてtorch.Tensorにする。
|
162 |
+
if return_tensors == 'pt':
|
163 |
+
encoding = { k: torch.tensor([v]) for k, v in encoding.items() }
|
164 |
+
|
165 |
+
return encoding, spans
|
166 |
+
|
167 |
+
@staticmethod
|
168 |
+
def Viterbi(scores_bert, num_entity_type, penalty=10000):
|
169 |
+
"""
|
170 |
+
Viterbiアルゴリズムで最適解を求める。
|
171 |
+
"""
|
172 |
+
m = 2*num_entity_type + 1
|
173 |
+
penalty_matrix = np.zeros([m, m])
|
174 |
+
for i in range(m):
|
175 |
+
for j in range(1+num_entity_type, m):
|
176 |
+
if not ( (i == j) or (i+num_entity_type == j) ):
|
177 |
+
penalty_matrix[i,j] = penalty
|
178 |
+
path = [ [i] for i in range(m) ]
|
179 |
+
scores_path = scores_bert[0] - penalty_matrix[0,:]
|
180 |
+
scores_bert = scores_bert[1:]
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
for scores in scores_bert:
|
185 |
+
assert len(scores) == 2*num_entity_type + 1
|
186 |
+
score_matrix = np.array(scores_path).reshape(-1,1) \
|
187 |
+
+ np.array(scores).reshape(1,-1) \
|
188 |
+
- penalty_matrix
|
189 |
+
scores_path = score_matrix.max(axis=0)
|
190 |
+
argmax = score_matrix.argmax(axis=0)
|
191 |
+
path_new = []
|
192 |
+
for i, idx in enumerate(argmax):
|
193 |
+
path_new.append( path[idx] + [i] )
|
194 |
+
path = path_new
|
195 |
+
|
196 |
+
labels_optimal = path[np.argmax(scores_path)]
|
197 |
+
return labels_optimal
|
198 |
+
|
199 |
+
def convert_bert_output_to_entities(self, text, scores, spans):
|
200 |
+
"""
|
201 |
+
文章、分類スコア、各トークンの位置から固有表現を得る。
|
202 |
+
分類スコアはサイズが(系列長、ラベル数)の2次元配列
|
203 |
+
"""
|
204 |
+
assert len(spans) == len(scores)
|
205 |
+
num_entity_type = self.num_entity_type
|
206 |
+
|
207 |
+
# 特殊トークンに対応する部分を取り除く
|
208 |
+
scores = [score for score, span in zip(scores, spans) if span[0]!=-1]
|
209 |
+
spans = [span for span in spans if span[0]!=-1]
|
210 |
+
|
211 |
+
# Viterbiアルゴリズムでラベルの予測値を決める。
|
212 |
+
labels = self.Viterbi(scores, num_entity_type)
|
213 |
+
|
214 |
+
# 同じラベルが連続するトークンをまとめて、固有表現を抽出する。
|
215 |
+
entities = []
|
216 |
+
for label, group \
|
217 |
+
in itertools.groupby(enumerate(labels), key=lambda x: x[1]):
|
218 |
+
|
219 |
+
group = list(group)
|
220 |
+
start = spans[group[0][0]][0]
|
221 |
+
end = spans[group[-1][0]][1]
|
222 |
+
|
223 |
+
if label != 0: # 固有表現であれば
|
224 |
+
if 1 <= label <= num_entity_type:
|
225 |
+
# ラベルが`B-`ならば、新しいentityを追加
|
226 |
+
entity = {
|
227 |
+
"name": text[start:end],
|
228 |
+
"span": [start, end],
|
229 |
+
"type_id": label
|
230 |
+
}
|
231 |
+
entities.append(entity)
|
232 |
+
else:
|
233 |
+
# ラベルが`I-`ならば、直近のentityを更新
|
234 |
+
entity['span'][1] = end
|
235 |
+
entity['name'] = text[entity['span'][0]:entity['span'][1]]
|
236 |
+
|
237 |
+
return entities
|
238 |
+
|