Rastapar commited on
Commit
64c8d92
1 Parent(s): 2ce30d3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -20,10 +20,10 @@ the Multicultural Classroom Discourse Dataset [Rapanta et al., 2021](https://www
20
  MathDial [Macina et al., 2023](https://aclanthology.org/2023.findings-emnlp.372), and
21
  Conversational Uptake [Demszky et al., 2021].
22
 
23
- We are evaluating LLaMa-3 for this task.
24
  Instead of using programmable fine-tuning libraries such as Axolotl ([link](https://github.com/OpenAccess-AI-Collective/axolotl))
25
  or Huggingface TRL ([link](https://github.com/huggingface/trl)),
26
- we are employing the more general command-line LLaMA-Factory ([link](https://github.com/hiyouga/LLaMA-Factory)) toolkit
27
  that facilitates the fine-tuning of various well-known LLMs on custom data.
28
  Parameter-efficient fine-tuning is achieved via the QLoRA method [Dettmers et al., 2023](https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf).
29
 
 
20
  MathDial [Macina et al., 2023](https://aclanthology.org/2023.findings-emnlp.372), and
21
  Conversational Uptake [Demszky et al., 2021].
22
 
23
+ We are evaluating Llama-3.1-8B for this task.
24
  Instead of using programmable fine-tuning libraries such as Axolotl ([link](https://github.com/OpenAccess-AI-Collective/axolotl))
25
  or Huggingface TRL ([link](https://github.com/huggingface/trl)),
26
+ we have employed the more general command-line LLaMA-Factory ([link](https://github.com/hiyouga/LLaMA-Factory)) toolkit
27
  that facilitates the fine-tuning of various well-known LLMs on custom data.
28
  Parameter-efficient fine-tuning is achieved via the QLoRA method [Dettmers et al., 2023](https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf).
29