Update README.md
Browse files
README.md
CHANGED
@@ -20,10 +20,10 @@ the Multicultural Classroom Discourse Dataset [Rapanta et al., 2021](https://www
|
|
20 |
MathDial [Macina et al., 2023](https://aclanthology.org/2023.findings-emnlp.372), and
|
21 |
Conversational Uptake [Demszky et al., 2021].
|
22 |
|
23 |
-
We are evaluating
|
24 |
Instead of using programmable fine-tuning libraries such as Axolotl ([link](https://github.com/OpenAccess-AI-Collective/axolotl))
|
25 |
or Huggingface TRL ([link](https://github.com/huggingface/trl)),
|
26 |
-
we
|
27 |
that facilitates the fine-tuning of various well-known LLMs on custom data.
|
28 |
Parameter-efficient fine-tuning is achieved via the QLoRA method [Dettmers et al., 2023](https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf).
|
29 |
|
|
|
20 |
MathDial [Macina et al., 2023](https://aclanthology.org/2023.findings-emnlp.372), and
|
21 |
Conversational Uptake [Demszky et al., 2021].
|
22 |
|
23 |
+
We are evaluating Llama-3.1-8B for this task.
|
24 |
Instead of using programmable fine-tuning libraries such as Axolotl ([link](https://github.com/OpenAccess-AI-Collective/axolotl))
|
25 |
or Huggingface TRL ([link](https://github.com/huggingface/trl)),
|
26 |
+
we have employed the more general command-line LLaMA-Factory ([link](https://github.com/hiyouga/LLaMA-Factory)) toolkit
|
27 |
that facilitates the fine-tuning of various well-known LLMs on custom data.
|
28 |
Parameter-efficient fine-tuning is achieved via the QLoRA method [Dettmers et al., 2023](https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf).
|
29 |
|