Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,50 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
---
|
4 |
+
# Usage
|
5 |
+
|
6 |
+
```python
|
7 |
+
import re
|
8 |
+
import urllib.parse
|
9 |
+
|
10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
+
import nltk.tokenize
|
12 |
+
import torch
|
13 |
+
|
14 |
+
preprocess_tokenizer_regex = r'[^\W_0-9]+|[^\w\s]+|_+|\s+|[0-9]+' # Similar to wordpunct_tokenize
|
15 |
+
preprocess_tokenizer = nltk.tokenize.RegexpTokenizer(preprocess_tokenizer_regex).tokenize
|
16 |
+
|
17 |
+
def preprocess_url(url):
|
18 |
+
protocol_idx = url.find("://")
|
19 |
+
protocol_idx = (protocol_idx + 3) if protocol_idx != -1 else 0
|
20 |
+
url = url.rstrip('/')[protocol_idx:]
|
21 |
+
url = urllib.parse.unquote(url, errors="backslashreplace")
|
22 |
+
|
23 |
+
# Remove blanks
|
24 |
+
url = re.sub(r'\s+', ' ', url)
|
25 |
+
url = re.sub(r'^\s+|\s+$', '', url)
|
26 |
+
|
27 |
+
# Tokenize
|
28 |
+
url = ' '.join(preprocess_tokenizer(url))
|
29 |
+
|
30 |
+
return url
|
31 |
+
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("Transducens/xlm-roberta-base-url2lang")
|
33 |
+
model = AutoModelForSequenceClassification.from_pretrained("Transducens/xlm-roberta-base-url2lang")
|
34 |
+
|
35 |
+
# prepare input
|
36 |
+
url = preprocess_url("https://es.wikipedia.org/wiki/Halo_3#Matchmaking")
|
37 |
+
encoded_input = tokenizer(url, add_special_tokens=True, truncation=True, padding="longest",
|
38 |
+
return_attention_mask=True, return_tensors="pt", max_length=256)
|
39 |
+
|
40 |
+
# forward pass
|
41 |
+
output = model(encoded_input["input_ids"], encoded_input["attention_mask"])
|
42 |
+
|
43 |
+
# obtain lang
|
44 |
+
probabilities = torch.softmax(output["logits"], dim=1).cpu().squeeze(0)
|
45 |
+
lang_idx = torch.argmax(probabilities, dim=0).item()
|
46 |
+
probability = probabilities[lang_idx].item()
|
47 |
+
lang = model.config.id2lang[str(lang_idx)]
|
48 |
+
|
49 |
+
print(f"Language (probability): {lang} ({probability})")
|
50 |
+
```
|