File size: 4,712 Bytes
ebb55f4 2ca2be9 ebb55f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
license: apache-2.0
datasets:
- PrimeIntellect/fineweb-edu
- PrimeIntellect/fineweb
- PrimeIntellect/StackV1-popular
- mlfoundations/dclm-baseline-1.0-parquet
- open-web-math/open-web-math
- arcee-ai/EvolKit-75K
- arcee-ai/Llama-405B-Logits
- arcee-ai/The-Tomb
- mlabonne/open-perfectblend-fixed
- microsoft/orca-agentinstruct-1M-v1-cleaned
- Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs
- Team-ACE/ToolACE
- Synthia-coder
- ServiceNow-AI/M2Lingual
- AI-MO/NuminaMath-TIR
- allenai/tulu-3-sft-personas-code
- allenai/tulu-3-sft-personas-math
- allenai/tulu-3-sft-personas-math-grade
- allenai/tulu-3-sft-personas-algebra
language:
- en
base_model: PrimeIntellect/INTELLECT-1-Instruct
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF
This model was converted to GGUF format from [`PrimeIntellect/INTELLECT-1-Instruct`](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) for more details on the model.
---
arcee-ai/Llama-405B-Logits
arcee-ai/The-Tomb
Instruction Following:
-
mlabonne/open-perfectblend-fixed (generalist capabilities)
microsoft/orca-agentinstruct-1M-v1-cleaned (Chain-of-Thought)
Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs
Domain-Specific:
-
Team-ACE/ToolACE (function calling)
Synthia coder (programming)
ServiceNow-AI/M2Lingual (multilingual)
AI-MO/NuminaMath-TIR (mathematics)
Tulu-3 Persona Datasets:
-
allenai/tulu-3-sft-personas-code
allenai/tulu-3-sft-personas-math
allenai/tulu-3-sft-personas-math-grade
allenai/tulu-3-sft-personas-algebra
Second, we execute 8 distinct Direct Preference Optimization (DPO)
runs with various combinations of data sets to enhance specific
performance metrics and align the model with human preferences. A key
advantage in our post-training process was INTELLECT-1's use of the
Llama-3 tokenizer, which allowed us to utilize logits from
Llama-3.1-405B to heal and maintain precision during the post-training
process via DistillKit.
Finally, we performed 16 strategic merges between candidate models
using MergeKit to create superior combined models that leverage the
strengths of different training runs. During the post-training phase, we
observed that when using a ChatML template without an explicit BOS
(begin-of-sequence) token, the initial loss was approximately 15.
However, when switching to the Llama 3.1 chat template, the loss for
these trainings started much lower at approximately 1.1, indicating
better alignment with the underlying Llama 3 tokenizer.
The combination of these post-training techniques resulted in
significant improvements in various benchmarks, particularly in
knowledge retrieval, grade school math, instruction following and
reasoning.
Citations
If you use this model in your research, please cite it as follows:
@article{jaghouar2024intellect,
title={INTELLECT-1 Technical Report.},
author={Jaghouar, Sami and Ong, Jack Min and Basra, Manveer and Obeid, Fares and Straube, Jannik and Keiblinger, Michael and Bakouch, Elie and Atkins, Lucas and Panahi, Maziyar and Goddard, Charles and Ryabinin, Max and Hagemann, Johannes},
journal={arXiv preprint},
year={2024}
}
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF --hf-file intellect-1-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF --hf-file intellect-1-instruct-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF --hf-file intellect-1-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF --hf-file intellect-1-instruct-q4_k_m.gguf -c 2048
```
|