File size: 4,452 Bytes
692e7f5 dc382e2 692e7f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
license: creativeml-openrail-m
datasets:
- amphora/QwQ-LongCoT-130K
language:
- en
base_model: prithivMLmods/QwQ-LCoT-3B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- long-CoT
- safetensors
- 3B
- Instruct
- QwQ
- Qwen2.5
- llama-cpp
- gguf-my-repo
---
# Triangle104/QwQ-LCoT-3B-Instruct-Q4_K_S-GGUF
This model was converted to GGUF format from [`prithivMLmods/QwQ-LCoT-3B-Instruct`](https://huggingface.co/prithivMLmods/QwQ-LCoT-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/QwQ-LCoT-3B-Instruct) for more details on the model.
---
Model details:
-
The QwQ-LCoT-3B-Instruct model is a lightweight, instruction-tuned language model designed for complex reasoning and explanation tasks. It is fine-tuned on the Qwen2.5-3B-Instruct base model using the QwQ-LongCoT-130K dataset, focusing on long-chain-of-thought (LCoT) reasoning for enhanced logical comprehension and detailed output generation.
Key Features:
Long Chain-of-Thought Reasoning:
Specifically designed to generate comprehensive, step-by-step explanations for complex queries.
Lightweight and Efficient:
With only 3 billion parameters, it is optimized for systems with limited computational resources without compromising reasoning capabilities.
Instruction Optimization:
Fine-tuned to follow prompts and provide concise, actionable, and structured responses.
Training Details:
Base Model: Qwen2.5-3B-Instruct
Dataset: amphora/QwQ-LongCoT-130K
Comprising 133,000 annotated samples focusing on logical tasks and structured thinking.
Capabilities:
Text Generation:
Provides detailed, structured, and logical text outputs tailored to user prompts.
Reasoning Tasks:
Solves step-by-step problems in math, logic, and science.
Educational Assistance:
Generates coherent explanations for academic and research purposes.
Dialogue and Summarization:
Handles conversational queries and summarizes long documents effectively.
Usage Instructions:
Setup: Download all model files and ensure compatibility with the Hugging Face Transformers library.
Loading the Model:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/QwQ-LCoT-3B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
Generate Long-Chain Reasoning Outputs:
input_text = "Explain the process of photosynthesis step-by-step."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=300, temperature=0.5)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Customize Output Generation:
Modify the generation_config.json file for different scenarios:
temperature: Controls randomness (lower = deterministic, higher = creative).
max_length: Sets response length.
top_p: Adjusts sampling for diversity in outputs.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/QwQ-LCoT-3B-Instruct-Q4_K_S-GGUF --hf-file qwq-lcot-3b-instruct-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/QwQ-LCoT-3B-Instruct-Q4_K_S-GGUF --hf-file qwq-lcot-3b-instruct-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/QwQ-LCoT-3B-Instruct-Q4_K_S-GGUF --hf-file qwq-lcot-3b-instruct-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/QwQ-LCoT-3B-Instruct-Q4_K_S-GGUF --hf-file qwq-lcot-3b-instruct-q4_k_s.gguf -c 2048
```
|