File size: 6,152 Bytes
e2964b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fad33b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2964b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
inference: false
library_name: transformers
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
license: cc-by-nc-4.0
extra_gated_prompt: By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license)  and
  acknowledge that the information you provide will be collected, used, and shared
  in accordance with Cohere’s [Privacy Policy]( https://cohere.com/privacy). You’ll
  receive email updates about C4AI and Cohere research, events, products and services.
  You can unsubscribe at any time.
extra_gated_fields:
  Name: text
  Affiliation: text
  Country: country
  I agree to use this model for non-commercial use ONLY: checkbox
tags:
- llama-cpp
- gguf-my-repo
base_model: CohereForAI/aya-expanse-8b
---

# Triangle104/aya-expanse-8b-Q4_K_M-GGUF
This model was converted to GGUF format from [`CohereForAI/aya-expanse-8b`](https://huggingface.co/CohereForAI/aya-expanse-8b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/CohereForAI/aya-expanse-8b) for more details on the model.

---
Model details:
-
Aya Expanse is an open-weight research release of a model with highly advanced multilingual capabilities. It focuses on pairing a highly performant pre-trained Command family of models with the result of a year’s dedicated research from Cohere For AI, including data arbitrage, multilingual preference training, safety tuning, and model merging. The result is a powerful multilingual large language model serving 23 languages.

We cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese

This model card corresponds to the 8-billion version of the Aya Expanse model. We also released an 32-billion version which you can find here.

    Developed by: Cohere For AI
    Point of Contact: Cohere For AI: cohere.for.ai
    License: CC-BY-NC, requires also adhering to C4AI's Acceptable Use Policy
    Model: Aya Expanse 8B
    Model Size: 8 billion parameters

Try Aya Expanse
-
Before downloading the weights, you can try out Aya Expanse in our hosted Hugging Face Space.

Usage
-
Please install transformers from the source repository.

# pip install 'git+https://github.com/huggingface/transformers.git'
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "CohereForAI/aya-expanse-8b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

# Format the message with the chat template
messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>

gen_tokens = model.generate(
    input_ids, 
    max_new_tokens=100, 
    do_sample=True, 
    temperature=0.3,
    )

gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)

Example Notebooks
-
Fine-Tuning:
-
    This notebook showcases a detailed use of fine-tuning Aya Expanse on more languages.

Example Use cases:
-
The following notebooks contributed by Cohere For AI Community members show how Aya Expanse can be used for different use cases:

    Mulitlingual Writing Assistant
    AyaMCooking
    Multilingual Question-Answering System

Model Details
-
Input: Models input text only.

Output: Models generate text only.

Model Architecture: Aya Expanse 8B is an auto-regressive language model that uses an optimized transformer architecture. Post-training includes supervised finetuning, preference training, and model merging.

Languages covered: The model is particularly optimized for multilinguality and supports the following languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese

Context length: 8K

Model Card Contact
-
For errors or additional questions about details in this model card, contact info@for.ai.

Terms of Use
-
We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant multilingual model to researchers all over the world. This model is governed by a CC-BY-NC License with an acceptable use addendum, and also requires adhering to C4AI's Acceptable Use Policy.
Try the model today

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/aya-expanse-8b-Q4_K_M-GGUF --hf-file aya-expanse-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/aya-expanse-8b-Q4_K_M-GGUF --hf-file aya-expanse-8b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/aya-expanse-8b-Q4_K_M-GGUF --hf-file aya-expanse-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/aya-expanse-8b-Q4_K_M-GGUF --hf-file aya-expanse-8b-q4_k_m.gguf -c 2048
```