File size: 6,291 Bytes
6a3d9c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import json
import torch
import torch.nn as nn
from torchvision import transforms, models
from flask import Flask, request, jsonify , render_template
import imageio.v3 as imageio
import numpy as np
from io import BytesIO
from PIL import Image
# 建立詞彙表
class tokenizer():
    def __init__(self, threshold=5):
        self.word2idx = {}
        self.idx2word = {}
        self.threshold = threshold
        self.word2count = {}

    def build_vocab(self, corpus):
        print('buiding vocab......')
        tokens = corpus.lower().split()
        for token in tokens:
            self.word2count[token] = self.word2count.get(token, 0) + 1
        idx = 0
        for word, count in self.word2count.items():
            if count >= self.threshold:
                self.word2idx[word] = idx
                self.idx2word[idx] = word
                idx += 1
        print(f'Vocab size: {len(self.idx2word)}')

    def encode(self, sentence):
        tokens = sentence.lower().split()
        return [self.word2idx.get(token, self.word2idx['<unk>']) for token in tokens]

    def decode(self, indices):
        return ' '.join([self.idx2word.get(idx, '<unk>') for idx in indices])

    def save_vocab(self, filepath):
        with open(filepath, 'w') as f:
            json.dump({'word2idx': self.word2idx, 'idx2word': self.idx2word}, f)

    def load_vocab(self, filepath):
        with open(filepath, 'r') as f:
            data = json.load(f)
            self.word2idx = data['word2idx']
            self.idx2word = {int(k): v for k, v in data['idx2word'].items()}

# 定義CNN編碼器
class CNNEncoder(nn.Module):
    def __init__(self, embed_size, num_groups=32):
        super(CNNEncoder, self).__init__()
        resnet = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
        for param in resnet.parameters():
            param.requires_grad = False
        self.resnet = nn.Sequential(*list(resnet.children())[:-1])
        self.linear = nn.Linear(resnet.fc.in_features, embed_size)
        self.gn = nn.GroupNorm(num_groups, embed_size)
        
    def forward(self, images):
        with torch.no_grad():
            features = self.resnet(images)
        features = features.view(features.size(0), -1)
        features = self.gn(self.linear(features))
        return features

# 定義RNN解碼器
class RNNDecoder(nn.Module):
    def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
        super(RNNDecoder, self).__init__()
        self.embed = nn.Embedding(vocab_size, embed_size)
        self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
        self.linear = nn.Linear(hidden_size, vocab_size)
        self.embed_size = embed_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers

    def forward(self, features, captions):
        embeddings = self.embed(captions)
        embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
        hiddens, _ = self.lstm(embeddings)
        outputs = self.linear(hiddens[:, 1:, :])
        return outputs

    def sample(self, features, states=None, max_len=20):
        sampled_ids = [vocab.word2idx['<start>']]
        inputs = features.unsqueeze(1)
        start_token = torch.tensor([vocab.word2idx['<start>']]).to(device).unsqueeze(0)
        inputs = torch.cat((features.unsqueeze(1), self.embed(start_token)), 1)
        for i in range(max_len):
            hiddens, states = self.lstm(inputs, states)
            outputs = self.linear(hiddens[:, -1, :])  # take the output of the last time step
            _, predicted = outputs.max(1)
            sampled_ids.append(predicted.item())
            if predicted.item() == vocab.word2idx['<end>']:
                break
            inputs = self.embed(predicted).unsqueeze(1)
        return sampled_ids

# 定義ImageToText模型
class im2text_model(nn.Module):
    def __init__(self, cnn_encoder, rnn_decoder):
        super(im2text_model, self).__init__()
        self.encoder = cnn_encoder
        self.decoder = rnn_decoder
    
    def forward(self, images, captions):
        features = self.encoder(images)
        outputs = self.decoder(features, captions)
        return outputs
    
    def sample(self, images, states=None):
        features = self.encoder(images)
        sampled_ids = self.decoder.sample(features, states)
        return sampled_ids

# 初始化應用
app = Flask(__name__)

# 加載詞彙表
vocab = tokenizer()
vocab.load_vocab('vocab_full.json')

# 加載模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.load('im2text_model_full.pt', map_location=torch.device('cpu'))
model.to(device)
model.eval()

transform = transforms.Compose([
    transforms.Resize((224, 224), antialias=True),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
@app.route('/')
def index():
    return render_template('index.html')

@app.route('/upload', methods=['POST'])
def upload_image():
    if 'file' not in request.files:
        return jsonify({'error': 'No file part'})
    file = request.files['file']
    if file.filename == '':
        return jsonify({'error': 'No selected file'})
    if file:
        # Convert image to RGB format if necessary and process in memory
        image = Image.open(file.stream)
        if image.format in ['GIF', 'WebP', 'PNG']:
            image = image.convert('RGB')
        
        # Save image to a BytesIO object
        byte_io = BytesIO()
        image.save(byte_io, 'JPEG')
        byte_io.seek(0)

        image = imageio.imread(byte_io)
        if len(image.shape) == 2:
            image = np.stack([image] * 3, axis=0)
        else:
            image = np.transpose(image, (2, 0, 1))
        image = torch.tensor(image / 255.0).float()
        image = transform(image).unsqueeze(0).to(device)
        
        with torch.no_grad():
            generated_caption = model.sample(image)
        generated_caption_text = vocab.decode(generated_caption)
        
        return jsonify({'caption': generated_caption_text})
if __name__ == '__main__':
    app.run(debug=True)