import os import json import torch import torch.nn as nn from torchvision import transforms, models from flask import Flask, request, jsonify , render_template import imageio.v3 as imageio import numpy as np from io import BytesIO from PIL import Image # 建立詞彙表 class tokenizer(): def __init__(self, threshold=5): self.word2idx = {} self.idx2word = {} self.threshold = threshold self.word2count = {} def build_vocab(self, corpus): print('buiding vocab......') tokens = corpus.lower().split() for token in tokens: self.word2count[token] = self.word2count.get(token, 0) + 1 idx = 0 for word, count in self.word2count.items(): if count >= self.threshold: self.word2idx[word] = idx self.idx2word[idx] = word idx += 1 print(f'Vocab size: {len(self.idx2word)}') def encode(self, sentence): tokens = sentence.lower().split() return [self.word2idx.get(token, self.word2idx['']) for token in tokens] def decode(self, indices): return ' '.join([self.idx2word.get(idx, '') for idx in indices]) def save_vocab(self, filepath): with open(filepath, 'w') as f: json.dump({'word2idx': self.word2idx, 'idx2word': self.idx2word}, f) def load_vocab(self, filepath): with open(filepath, 'r') as f: data = json.load(f) self.word2idx = data['word2idx'] self.idx2word = {int(k): v for k, v in data['idx2word'].items()} # 定義CNN編碼器 class CNNEncoder(nn.Module): def __init__(self, embed_size, num_groups=32): super(CNNEncoder, self).__init__() resnet = models.resnet50(weights=models.ResNet50_Weights.DEFAULT) for param in resnet.parameters(): param.requires_grad = False self.resnet = nn.Sequential(*list(resnet.children())[:-1]) self.linear = nn.Linear(resnet.fc.in_features, embed_size) self.gn = nn.GroupNorm(num_groups, embed_size) def forward(self, images): with torch.no_grad(): features = self.resnet(images) features = features.view(features.size(0), -1) features = self.gn(self.linear(features)) return features # 定義RNN解碼器 class RNNDecoder(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers): super(RNNDecoder, self).__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True) self.linear = nn.Linear(hidden_size, vocab_size) self.embed_size = embed_size self.hidden_size = hidden_size self.num_layers = num_layers def forward(self, features, captions): embeddings = self.embed(captions) embeddings = torch.cat((features.unsqueeze(1), embeddings), 1) hiddens, _ = self.lstm(embeddings) outputs = self.linear(hiddens[:, 1:, :]) return outputs def sample(self, features, states=None, max_len=20): sampled_ids = [vocab.word2idx['']] inputs = features.unsqueeze(1) start_token = torch.tensor([vocab.word2idx['']]).to(device).unsqueeze(0) inputs = torch.cat((features.unsqueeze(1), self.embed(start_token)), 1) for i in range(max_len): hiddens, states = self.lstm(inputs, states) outputs = self.linear(hiddens[:, -1, :]) # take the output of the last time step _, predicted = outputs.max(1) sampled_ids.append(predicted.item()) if predicted.item() == vocab.word2idx['']: break inputs = self.embed(predicted).unsqueeze(1) return sampled_ids # 定義ImageToText模型 class im2text_model(nn.Module): def __init__(self, cnn_encoder, rnn_decoder): super(im2text_model, self).__init__() self.encoder = cnn_encoder self.decoder = rnn_decoder def forward(self, images, captions): features = self.encoder(images) outputs = self.decoder(features, captions) return outputs def sample(self, images, states=None): features = self.encoder(images) sampled_ids = self.decoder.sample(features, states) return sampled_ids # 初始化應用 app = Flask(__name__) # 加載詞彙表 vocab = tokenizer() vocab.load_vocab('vocab_full.json') # 加載模型 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = torch.load('im2text_model_full.pt', map_location=torch.device('cpu')) model.to(device) model.eval() transform = transforms.Compose([ transforms.Resize((224, 224), antialias=True), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) @app.route('/') def index(): return render_template('index.html') @app.route('/upload', methods=['POST']) def upload_image(): if 'file' not in request.files: return jsonify({'error': 'No file part'}) file = request.files['file'] if file.filename == '': return jsonify({'error': 'No selected file'}) if file: # Convert image to RGB format if necessary and process in memory image = Image.open(file.stream) if image.format in ['GIF', 'WebP', 'PNG']: image = image.convert('RGB') # Save image to a BytesIO object byte_io = BytesIO() image.save(byte_io, 'JPEG') byte_io.seek(0) image = imageio.imread(byte_io) if len(image.shape) == 2: image = np.stack([image] * 3, axis=0) else: image = np.transpose(image, (2, 0, 1)) image = torch.tensor(image / 255.0).float() image = transform(image).unsqueeze(0).to(device) with torch.no_grad(): generated_caption = model.sample(image) generated_caption_text = vocab.decode(generated_caption) return jsonify({'caption': generated_caption_text}) if __name__ == '__main__': app.run(debug=True)