erikhenriksson
commited on
Commit
•
663e709
1
Parent(s):
d1e0b7b
Update README.md
Browse files
README.md
CHANGED
@@ -9,18 +9,14 @@ language:
|
|
9 |
metrics:
|
10 |
- f1
|
11 |
---
|
12 |
-
# Web register classification
|
13 |
|
14 |
-
A web register classification model
|
15 |
|
16 |
## Model Details
|
17 |
|
18 |
### Model Description
|
19 |
|
20 |
-
<!-- Provide a longer summary of what this model is. -->
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
- **Developed by:** TurkuNLP
|
25 |
- **Funded by:** The Research Council of Finland, Eemil Aaltonen Foundation, University of Turku
|
26 |
- **Shared by:** TurkuNLP
|
@@ -43,34 +39,56 @@ It is designed to support the development of open language models and for lingui
|
|
43 |
|
44 |
## How to Get Started with the Model
|
45 |
|
|
|
|
|
46 |
```
|
|
|
|
|
|
|
47 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
|
49 |
-
|
50 |
-
model = AutoModelForSequenceClassification.from_pretrained(cfg.model_path).to(
|
51 |
-
device
|
52 |
-
)
|
53 |
-
model.eval()
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained(config.get("_name_or_path"))
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
## Training Details
|
64 |
|
65 |
### Training Data
|
66 |
|
67 |
-
The
|
68 |
|
69 |
### Training Procedure
|
70 |
|
71 |
#### Training Hyperparameters
|
72 |
|
73 |
- **Batch size:** 8
|
|
|
74 |
- **Learning rate:** 0.00005
|
75 |
- **Precision:** bfloat16 (non-mixed precision)
|
76 |
- **TF32:** Enabled
|
@@ -85,34 +103,6 @@ Average inference time (across 1000 iterations), using a single NVIDIA A100 GPU
|
|
85 |
|
86 |
Coming soon
|
87 |
|
88 |
-
### Testing Data, Factors & Metrics
|
89 |
-
|
90 |
-
#### Testing Data
|
91 |
-
|
92 |
-
<!-- This should link to a Dataset Card if possible. -->
|
93 |
-
|
94 |
-
[More Information Needed]
|
95 |
-
|
96 |
-
#### Factors
|
97 |
-
|
98 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
99 |
-
|
100 |
-
[More Information Needed]
|
101 |
-
|
102 |
-
#### Metrics
|
103 |
-
|
104 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
105 |
-
|
106 |
-
[More Information Needed]
|
107 |
-
|
108 |
-
### Results
|
109 |
-
|
110 |
-
[More Information Needed]
|
111 |
-
|
112 |
-
#### Summary
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
## Technical Specifications
|
118 |
|
@@ -126,7 +116,8 @@ NVIDIA A100-SXM4-40GB
|
|
126 |
|
127 |
#### Software
|
128 |
|
129 |
-
|
|
|
130 |
|
131 |
## Citation
|
132 |
|
|
|
9 |
metrics:
|
10 |
- f1
|
11 |
---
|
12 |
+
# Web register classification (multilingual model)
|
13 |
|
14 |
+
A web register classification model fine-tuned from XLM-RoBERTa-large.
|
15 |
|
16 |
## Model Details
|
17 |
|
18 |
### Model Description
|
19 |
|
|
|
|
|
|
|
|
|
20 |
- **Developed by:** TurkuNLP
|
21 |
- **Funded by:** The Research Council of Finland, Eemil Aaltonen Foundation, University of Turku
|
22 |
- **Shared by:** TurkuNLP
|
|
|
39 |
|
40 |
## How to Get Started with the Model
|
41 |
|
42 |
+
Use the code below to get started with the model.
|
43 |
+
|
44 |
```
|
45 |
+
import torch
|
46 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
47 |
+
|
48 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
|
50 |
+
model_id = "TurkuNLP/multilingual-web-register-classification"
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Load model and tokenizer
|
53 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id).to(device)
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
55 |
|
56 |
+
# Text to be categorized
|
57 |
+
text = "A text to be categorized"
|
58 |
+
|
59 |
+
# Tokenize text
|
60 |
+
inputs = tokenizer([text], return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
|
61 |
|
62 |
+
with torch.no_grad():
|
63 |
+
outputs = model(**inputs)
|
64 |
+
|
65 |
+
# Apply sigmoid to the logits to get probabilities
|
66 |
+
probabilities = torch.sigmoid(outputs.logits).squeeze()
|
67 |
+
|
68 |
+
# Determine a threshold for predicting labels (e.g., 0.5)
|
69 |
+
threshold = 0.5
|
70 |
+
predicted_label_indices = (probabilities > threshold).nonzero(as_tuple=True)[0]
|
71 |
+
|
72 |
+
# Extract readable labels using id2label
|
73 |
+
id2label = model.config.id2label
|
74 |
+
predicted_labels = [id2label[idx.item()] for idx in predicted_label_indices]
|
75 |
+
|
76 |
+
print("Predicted labels:", predicted_labels)
|
77 |
+
|
78 |
+
```
|
79 |
|
80 |
## Training Details
|
81 |
|
82 |
### Training Data
|
83 |
|
84 |
+
The model was trained using the Multilingual CORE Corpora, which will be published soon.
|
85 |
|
86 |
### Training Procedure
|
87 |
|
88 |
#### Training Hyperparameters
|
89 |
|
90 |
- **Batch size:** 8
|
91 |
+
- **Epochs:** 7
|
92 |
- **Learning rate:** 0.00005
|
93 |
- **Precision:** bfloat16 (non-mixed precision)
|
94 |
- **TF32:** Enabled
|
|
|
103 |
|
104 |
Coming soon
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
## Technical Specifications
|
108 |
|
|
|
116 |
|
117 |
#### Software
|
118 |
|
119 |
+
torch 2.2.1
|
120 |
+
transformers 4.39.3
|
121 |
|
122 |
## Citation
|
123 |
|