Update README.md
Browse files
README.md
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
-
<img src="https://
|
|
|
2 |
MARBERT is one of two models described in the paper ["ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic"](https://mageed.arts.ubc.ca/files/2020/12/marbert_arxiv_2020.pdf). MARBERT is a large scale pre-training masked language model focused on both Dialectal Arabic (DA) and MSA. Arabic has multiple varieties. To train MARBERT, we randomly sample 1B Arabic tweets from a large in-house dataset of about 6B tweets. We only include tweets with at least 3 Arabic words, based on character string matching, regardless whether the tweet has non-Arabic string or not. That is, we do not remove non-Arabic so long as the tweet meets the 3 Arabic word criterion. The dataset makes up 128GB of text (15.6B tokens). We use the same network architecture as ARBERT (BERT-base), but without the next sentence prediction (NSP) objective since tweets are short. See our [repo](https://github.com/UBC-NLP/LMBERT) for modifying BERT code to remove NSP. For more information about MARBERT, please visit our own GitHub [repo](https://github.com/UBC-NLP/marbert).
|
|
|
1 |
+
<img src="https://raw.githubusercontent.com/UBC-NLP/marbert/main/ARBERT_MARBERT.jpg" alt="drawing" width="30%" height="30%" align="right"/>
|
2 |
+
|
3 |
MARBERT is one of two models described in the paper ["ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic"](https://mageed.arts.ubc.ca/files/2020/12/marbert_arxiv_2020.pdf). MARBERT is a large scale pre-training masked language model focused on both Dialectal Arabic (DA) and MSA. Arabic has multiple varieties. To train MARBERT, we randomly sample 1B Arabic tweets from a large in-house dataset of about 6B tweets. We only include tweets with at least 3 Arabic words, based on character string matching, regardless whether the tweet has non-Arabic string or not. That is, we do not remove non-Arabic so long as the tweet meets the 3 Arabic word criterion. The dataset makes up 128GB of text (15.6B tokens). We use the same network architecture as ARBERT (BERT-base), but without the next sentence prediction (NSP) objective since tweets are short. See our [repo](https://github.com/UBC-NLP/LMBERT) for modifying BERT code to remove NSP. For more information about MARBERT, please visit our own GitHub [repo](https://github.com/UBC-NLP/marbert).
|