File size: 2,231 Bytes
968309b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
tags:
- clip
library_name: open_clip
pipeline_tag: zero-shot-image-classification
license: apache-2.0
datasets:
- mlfoundations/datacomp_1b
---
# Model card for ViT-bigG-14-CLIPA-336-datacomp1B
A CLIPA-v2 model...
## Model Details
- **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification.
- **Original:** https://github.com/UCSC-VLAA/CLIPA
- **Dataset:** mlfoundations/datacomp_1b
- **Papers:**
- CLIPA-v2: Scaling CLIP Training with 81.1% Zero-shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy: https://arxiv.org/abs/2306.15658
- An Inverse Scaling Law for CLIP Training: https://arxiv.org/abs/2305.07017
## Model Usage
### With OpenCLIP
```
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
model, preprocess = create_model_from_pretrained('hf-hub:ViT-bigG-14-CLIPA-336')
tokenizer = get_tokenizer('hf-hub:ViT-bigG-14-CLIPA-336')
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features = F.normalize(image_features, dim=-1)
text_features = F.normalize(text_features, dim=-1)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs) # prints: [[0., 0., 0., 1.0]]
```
## Citation
```bibtex
@article{li2023clipav2,
title={CLIPA-v2: Scaling CLIP Training with 81.1% Zero-shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy},
author={Xianhang Li and Zeyu Wang and Cihang Xie},
journal={arXiv preprint arXiv:2306.15658},
year={2023},
}
```
```bibtex
@inproceedings{li2023clipa,
title={An Inverse Scaling Law for CLIP Training},
author={Xianhang Li and Zeyu Wang and Cihang Xie},
booktitle={NeurIPS},
year={2023},
}
```
|