Alikhan Urumov
commited on
Commit
•
41c6a60
1
Parent(s):
2541e1b
Update README.md
Browse files
README.md
CHANGED
@@ -4,56 +4,215 @@ tags:
|
|
4 |
model-index:
|
5 |
- name: t5-russian-summarization
|
6 |
results: []
|
|
|
|
|
7 |
---
|
8 |
|
9 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
should probably proofread and complete it, then remove this comment. -->
|
11 |
-
|
12 |
# t5-russian-summarization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
It achieves the following results on the evaluation set:
|
16 |
-
- eval_loss: 1.5715
|
17 |
-
- eval_rouge1: 9.8582
|
18 |
-
- eval_rouge2: 2.4598
|
19 |
-
- eval_rougeL: 9.973
|
20 |
-
- eval_rougeLsum: 9.9206
|
21 |
-
- eval_gen_len: 14.9874
|
22 |
-
- eval_runtime: 35.6274
|
23 |
-
- eval_samples_per_second: 13.389
|
24 |
-
- eval_steps_per_second: 1.684
|
25 |
-
- epoch: 0.57
|
26 |
-
- step: 32000
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
- learning_rate: 5e-05
|
46 |
-
- train_batch_size: 8
|
47 |
-
- eval_batch_size: 8
|
48 |
-
- seed: 42
|
49 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
-
- lr_scheduler_type: linear
|
51 |
-
- num_epochs: 1
|
52 |
-
- mixed_precision_training: Native AMP
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
- Transformers 4.17.0
|
57 |
-
- Pytorch 1.10.0+cu111
|
58 |
-
- Datasets 2.0.0
|
59 |
-
- Tokenizers 0.11.6
|
|
|
4 |
model-index:
|
5 |
- name: t5-russian-summarization
|
6 |
results: []
|
7 |
+
widget:
|
8 |
+
- text: "Официальный представитель Минобороны России генерал-майор Игорь Конашенков заявил, что два ударных вертолета Украины нанесли удар по гражданскому объекту на окраине Белгороде, в результате попадания ракет отдельные резервуары были повреждены и загорелись, при этом никакого отношения к российским Вооруженным силам нефтебаза не имеет. СК возбудил уголовное дело, действия украинских военных расцениваются как теракт."
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
---
|
14 |
# t5-russian-summarization
|
15 |
+
---
|
16 |
+
модель для исправление текста из распознаного аудио. моя модлеь для распознования аудио https://huggingface.co/UrukHan/wav2vec2-russian и его результаты можно закидывать в эту модель. тестил на видео случайном с ютюба
|
17 |
+
|
18 |
+
#
|
19 |
+
---
|
20 |
+
Датасеты для обучения:
|
21 |
+
UrukHan/t5-russian-summarization : https://huggingface.co/datasets/UrukHan/t5-russian-summarization
|
22 |
+
|
23 |
+
---
|
24 |
|
25 |
+
# Запуск на вывод результатов пример работы с комментариями в колабе https://colab.research.google.com/drive/1I3G-VPzQhB-zG_YANkg1ptB1On_1_0wE?usp=sharing :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
#
|
28 |
+
```python
|
29 |
+
# Установим библиотеку трансформеров
|
30 |
+
!pip install transformers
|
31 |
|
32 |
+
# Импортируем библиотеки
|
33 |
+
from transformers import AutoModelForSeq2SeqLM, T5TokenizerFast
|
34 |
|
35 |
+
# Зададим название выбронной модели из хаба
|
36 |
+
MODEL_NAME = 't5-russian-summarization'
|
37 |
+
MAX_INPUT = 256
|
38 |
+
|
39 |
+
# Загрузка модели и токенизатора
|
40 |
+
tokenizer = T5TokenizerFast.from_pretrained(MODEL_NAME)
|
41 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
42 |
+
|
43 |
+
# Входные данные (можно массив фраз или текст)
|
44 |
+
input_sequences = ['Официальный представитель Минобороны России генерал-майор Игорь Конашенков заявил, что два ударных вертолета Украины нанесли удар по гражданскому объекту на окраине Белгороде, в результате попадания ракет отдельные резервуары были повреждены и загорелись', 'при этом никакого отношения к российским Вооруженным силам нефтебаза не имеет. СК возбудил уголовное дело, действия украинских военных расцениваются как теракт.'] # или можно использовать одиночные фразы: input_sequences = 'при этом никакого отношения к российским Вооруженным силам нефтебаза не имеет. СК возбудил уголовное дело, действия украинских военных расцениваются как теракт.'
|
45 |
+
|
46 |
+
task_prefix = "Summarization: " # Токенизирование данных
|
47 |
+
if type(input_sequences) != list: input_sequences = [input_sequences]
|
48 |
+
encoded = tokenizer(
|
49 |
+
[task_prefix + sequence for sequence in input_sequences],
|
50 |
+
padding="longest",
|
51 |
+
max_length=MAX_INPUT,
|
52 |
+
truncation=True,
|
53 |
+
return_tensors="pt",
|
54 |
+
)
|
55 |
+
|
56 |
+
predicts = model.generate(encoded) # # Прогнозирование
|
57 |
+
|
58 |
+
tokenizer.batch_decode(predicts, skip_special_tokens=True) # Декодируем данные
|
59 |
+
```
|
60 |
+
#
|
61 |
+
---
|
62 |
+
#Настроенный блокнот для запуска обучения и сохранения модели в свой репозиторий на huggingface hub:
|
63 |
+
#https://colab.research.google.com/drive/1H4IoasDqa2TEjGivVDp-4Pdpm0oxrCWd?usp=sharing
|
64 |
+
#
|
65 |
+
```python
|
66 |
+
# Установка библиотек
|
67 |
+
!pip install datasets
|
68 |
+
!apt install git-lfs
|
69 |
+
!pip install transformers
|
70 |
+
!pip install sentencepiece
|
71 |
+
!pip install rouge_score
|
72 |
|
73 |
+
# Импорт библиотек
|
74 |
+
import numpy as np
|
75 |
+
from datasets import Dataset
|
76 |
+
import tensorflow as
|
77 |
+
import nltk
|
78 |
+
from transformers import T5TokenizerFast, Seq2SeqTrainingArguments, Seq2SeqTrainer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq
|
79 |
+
import torch
|
80 |
+
from transformers.optimization import Adafactor, AdafactorSchedule
|
81 |
+
from datasets import load_dataset, load_metric
|
82 |
|
83 |
+
# загрузка параметров
|
84 |
+
raw_datasets = load_dataset("xsum")
|
85 |
+
metric = load_metric("rouge")
|
86 |
+
nltk.download('punkt')
|
87 |
|
88 |
+
# Ввести свой ключ huggingface hyb
|
89 |
+
from huggingface_hub import notebook_login
|
90 |
+
notebook_login()
|
91 |
+
|
92 |
+
# Определение параметров
|
93 |
+
REPO = "t5-russian-summarization" # Введите наазвание название репозитория
|
94 |
+
MODEL_NAME = "UrukHan/t5-russian-summarization" # Введите наазвание выбранной модели из хаба
|
95 |
+
MAX_INPUT = 256 # Введите максимальную длинну входных данных в токенах (длинна входных фраз в словах (можно считать полслова токен))
|
96 |
+
MAX_OUTPUT = 256 # Введите максимальную длинну прогнозов в токенах (можно уменьшить для задач суммризации или других задач где выход короче)
|
97 |
+
BATCH_SIZE = 8
|
98 |
+
DATASET = "UrukHan/t5-russian-summarization" # Введите наазвание название датасета
|
99 |
+
|
100 |
+
# Загрузка датасета использование других типов данных опишу ниже
|
101 |
+
data = load_dataset(DATASET)
|
102 |
+
|
103 |
+
# Загрузка модели и токенизатора
|
104 |
+
tokenizer = T5TokenizerFast.from_pretrained(MODEL_NAME)
|
105 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
106 |
+
|
107 |
+
model.config.max_length = MAX_OUTPUT # по умолчанию 20, поэтому во всех моделях прогнозы обрезаются выходные последовательности
|
108 |
+
# Закоментить после первого соъранения в репозиторий свой необъязательно
|
109 |
+
tokenizer.push_to_hub(REPO)
|
110 |
+
|
111 |
+
train = data['train']
|
112 |
+
test = data['test'].train_test_split(0.02)['test'] # Уменьшил так тестовыу. выборку чтоб не ждать долго расчет ошибок между эпохами
|
113 |
+
|
114 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) #return_tensors="tf"
|
115 |
+
|
116 |
+
def compute_metrics(eval_pred):
|
117 |
+
predictions, labels = eval_pred
|
118 |
+
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
|
119 |
+
# Replace -100 in the labels as we can't decode them.
|
120 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
121 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
122 |
+
|
123 |
+
# Rouge expects a newline after each sentence
|
124 |
+
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
|
125 |
+
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]
|
126 |
+
|
127 |
+
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
128 |
+
# Extract a few results
|
129 |
+
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
|
130 |
+
|
131 |
+
# Add mean generated length
|
132 |
+
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
|
133 |
+
result["gen_len"] = np.mean(prediction_lens)
|
134 |
+
|
135 |
+
return {k: round(v, 4) for k, v in result.items()}
|
136 |
+
|
137 |
+
training_args = Seq2SeqTrainingArguments(
|
138 |
+
output_dir = REPO,
|
139 |
+
#overwrite_output_dir=True,
|
140 |
+
evaluation_strategy='steps',
|
141 |
+
#learning_rate=2e-5,
|
142 |
+
eval_steps=5000,
|
143 |
+
save_steps=5000,
|
144 |
+
num_train_epochs=1,
|
145 |
+
predict_with_generate=True,
|
146 |
+
per_device_train_batch_size=BATCH_SIZE,
|
147 |
+
per_device_eval_batch_size=BATCH_SIZE,
|
148 |
+
fp16=True,
|
149 |
+
save_total_limit=2,
|
150 |
+
#generation_max_length=256,
|
151 |
+
#generation_num_beams=4,
|
152 |
+
weight_decay=0.005,
|
153 |
+
#logging_dir='logs',
|
154 |
+
push_to_hub=True,
|
155 |
+
)
|
156 |
+
|
157 |
+
# Выберем вручную оптимизатор. Т5 в оригинальной архитектуре использует Адафактор оптимизатор
|
158 |
+
optimizer = Adafactor(
|
159 |
+
model.parameters(),
|
160 |
+
lr=1e-5,
|
161 |
+
eps=(1e-30, 1e-3),
|
162 |
+
clip_threshold=1.0,
|
163 |
+
decay_rate=-0.8,
|
164 |
+
beta1=None,
|
165 |
+
weight_decay=0.0,
|
166 |
+
relative_step=False,
|
167 |
+
scale_parameter=False,
|
168 |
+
warmup_init=False,
|
169 |
+
)
|
170 |
+
lr_scheduler = AdafactorSchedule(optimizer)
|
171 |
+
|
172 |
+
trainer = Seq2SeqTrainer(
|
173 |
+
model=model,
|
174 |
+
args=training_args,
|
175 |
+
train_dataset = train,
|
176 |
+
eval_dataset = test,
|
177 |
+
optimizers = (optimizer, lr_scheduler),
|
178 |
+
tokenizer = tokenizer,
|
179 |
+
compute_metrics=compute_metrics
|
180 |
+
)
|
181 |
+
|
182 |
+
trainer.train()
|
183 |
+
|
184 |
+
trainer.push_to_hub()
|
185 |
+
```
|
186 |
+
#
|
187 |
+
---
|
188 |
+
# Пример конвертации массивов для данной сети
|
189 |
+
#
|
190 |
+
```python
|
191 |
+
input_data = ['Официальный представитель Минобороны России генерал-майор Игорь Конашенков заявил, что два ударных вертолета Украины нанесли удар по гражданскому объекту на окраине Белгороде, в результате попадания ракет отдельные резервуары были повреждены и загорелись при этом никакого отношения к российским Вооруженным силам нефтебаза не имеет. СК возбудил уголовное дело, действия украинских военных расцениваются как теракт.']
|
192 |
+
output_data = ['Минобороны РФ: Украинские вертолеты нанесли удар по гражданскому объекту в Белгороде']
|
193 |
|
194 |
+
# Токенизируем входные данные
|
195 |
+
task_prefix = "Spell correct: "
|
196 |
+
input_sequences = input_data
|
197 |
+
encoding = tokenizer(
|
198 |
+
[task_prefix + sequence for sequence in input_sequences],
|
199 |
+
padding="longest",
|
200 |
+
max_length=MAX_INPUT,
|
201 |
+
truncation=True,
|
202 |
+
return_tensors="pt",
|
203 |
+
)
|
204 |
+
input_ids, attention_mask = encoding.input_ids, encoding.attention_mask
|
205 |
|
206 |
+
# Токенизируем выходные данные
|
207 |
+
target_encoding = tokenizer(output_data, padding="longest", max_length=MAX_OUTPUT, truncation=True)
|
208 |
+
labels = target_encoding.input_ids
|
209 |
+
# replace padding token id's of the labels by -100
|
210 |
+
labels = torch.tensor(labels)
|
211 |
+
labels[labels == tokenizer.pad_token_id] = -100'''
|
212 |
|
213 |
+
# Конвертируем наши данные в формат dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
+
data = Dataset.from_pandas(pd.DataFrame({'input_ids': list(np.array(input_ids)), 'attention_mask': list(np.array(attention_mask)), 'labels': list(np.array(labels))}))
|
216 |
+
data = data.train_test_split(0.02)
|
217 |
+
# и получим на вход сети для нашешго trainer: train_dataset = data['train'], eval_dataset = data['test']
|
218 |
|
|
|
|
|
|
|
|