--- license: apache-2.0 base_model: huggingface-course/bert-finetuned-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [huggingface-course/bert-finetuned-ner](https://huggingface.co/huggingface-course/bert-finetuned-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0731 - Precision: 0.9344 - Recall: 0.9524 - F1: 0.9433 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0273 | 1.0 | 1756 | 0.0761 | 0.9250 | 0.9424 | 0.9336 | 0.9849 | | 0.0183 | 2.0 | 3512 | 0.0671 | 0.9363 | 0.9505 | 0.9434 | 0.9865 | | 0.0077 | 3.0 | 5268 | 0.0731 | 0.9344 | 0.9524 | 0.9433 | 0.9867 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0