{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e946ad962c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708617250809954789, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADlDb1Dzmi8ieohPQM/uzx/T8y9MiCWPQAAgD8AAIA/Myk4PKkpCrzIOPe9Bm97PMRwWz3rNVO9AACAPwAAgD+aCp48BZeVPDWJVb5u9Ja+3gHevVXJUL0AAAAAAAAAAJpB07s2sBm8osuHvWwCHD04k3w9a8n8vQAAgD8AAIA/AGCXvIXQvLtoT+Q9xgmpPCocFb0eBY49AACAPwAAgD/NrI26rtmXukf/qTLHnHqwb+gLOdZX37IAAIA/AACAPzP3RLx7cwc/7QxaPb8qIb+tmJG7O0XDPQAAAAAAAAAAMwsXPOG0urrCtxc16XuJMBJvi7ni8V60AACAPwAAgD8ALhy8g2VMvKSuk7yBeYI7XPaxPXCxdLwAAIA/AACAP82fujyujYC6E8jjO53+FzaG+tE6MhgMNQAAAAAAAAAAhoIlPqOvlD6DjNW+DljKvlY+x7uBXqa+AAAAAAAAAACzPZA9sXmWPWhuBr5Qmdq+JpUyvGnbCr0AAAAAAAAAAGb/5Lz28Hi6CsWZtc8BQLCXS3+7vbGxNAAAgD8AAIA/AACLunuftj+BNZ47cgerPK+BEL1sECS+AAAAAAAAAAAAepw8iuuxPwjHyT3qV46+knFFvT65QLwAAAAAAAAAALOjgz3DSI4/Tn4gPmSVUL+RQVY97gcDPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL3kTYdyT+MAWyUS6SMAXSUR0C2dbIWP91mdX2UKGgGR0Bzm37m+0w8aAdLumgIR0C2dbwUpNKzdX2UKGgGR0BxzKqNp/PPaAdLzGgIR0C2db8S00FbdX2UKGgGR0BygArc0tROaAdLmWgIR0C2ddktNBWxdX2UKGgGR0By2isQumJnaAdLyWgIR0C2dgJPuXu3dX2UKGgGR0Bx1MN5MURGaAdLzWgIR0C2dgTZcs19dX2UKGgGR0BzFCMKkVN6aAdLumgIR0C2diu8XenAdX2UKGgGR0BzR9ujynUEaAdLyGgIR0C2djwy6+WXdX2UKGgGR0BzBrdpItlJaAdL5mgIR0C2dmipaRp2dX2UKGgGR0By+FMoMKCyaAdLpWgIR0C2dnxL0z0pdX2UKGgGR0BywZHFxXGPaAdLu2gIR0C2doejRD1HdX2UKGgGR0BxIPIeYD1XaAdLw2gIR0C2dqUjgQ6IdX2UKGgGR0ByBGWszVMFaAdL3GgIR0C2dsJQ+EAYdX2UKGgGR0ByeZX9zfaYaAdLumgIR0C2dutwBHTadX2UKGgGR0By+GgElme2aAdL7GgIR0C2dvJKe05VdX2UKGgGR0Bz46G47Rv4aAdLvGgIR0C2dwO3MINWdX2UKGgGR0BzOEMuvlltaAdL0mgIR0C2dwMasIVudX2UKGgGR0BxQjXarWAgaAdLy2gIR0C2dxvZqVQidX2UKGgGR0Byw95cC5mRaAdLwWgIR0C2e9bx3FDOdX2UKGgGR0BxMJ2LYPGyaAdLsWgIR0C2e+eZ1FH8dX2UKGgGR0Bxiigte2NOaAdLsWgIR0C2fA1uvUz9dX2UKGgGR0BzUgj/uLJkaAdL02gIR0C2fBguEmICdX2UKGgGR0ByDojQiRnwaAdLxWgIR0C2fDg2Q4jsdX2UKGgGR0BxPRQhwEQoaAdLs2gIR0C2fEh8+iaidX2UKGgGR0Byimm65Gz9aAdLqmgIR0C2fEsLfDUFdX2UKGgGR0Byd+CJ40MxaAdLs2gIR0C2fF3JT2nLdX2UKGgGR0Bx83umaYu1aAdLnGgIR0C2fGF5fMOgdX2UKGgGR0BnuGdCmdiEaAdN6ANoCEdAtnybWwu/UXV9lChoBkdAcuvydnTRY2gHS6BoCEdAtnylbs4T9XV9lChoBkdAcsy5AyEcsGgHS9hoCEdAtnyoKiO/+XV9lChoBkdAcarQK8cuJ2gHS71oCEdAtnyvZh8YynV9lChoBkdAcQLuKGcnV2gHS8ZoCEdAtny2qdYnv3V9lChoBkdAcWmNBWxQi2gHS8FoCEdAtny9Tgl4T3V9lChoBkdAb8r45cTrV2gHS7ZoCEdAtnzPbJwKjXV9lChoBkdAcjjyRB/qgWgHS9xoCEdAtnzd+EytWHV9lChoBkdAcZF0jkdWAGgHS71oCEdAtnznShJyyXV9lChoBkdAcqke8f3evmgHS6xoCEdAtn0cZVGTcXV9lChoBkdAcrQlFMIu5GgHS8RoCEdAtn0dk/bCanV9lChoBkdAdBAt+CsfaGgHS9hoCEdAtn0uNHYpUnV9lChoBkdAcYw4ACGN72gHS7poCEdAtn090bLlm3V9lChoBkdAcecaTOgQH2gHS7hoCEdAtn08+Y+jd3V9lChoBkdAcncAj6eoUGgHS7JoCEdAtn1KXyAhCHV9lChoBkdAcQxHTI/7i2gHS7VoCEdAtn1K+QEIPnV9lChoBkdAchkofSx7iWgHS69oCEdAtn2AjOcDsHV9lChoBkdAc4D9g4Otn2gHS65oCEdAtn2Kkfs/p3V9lChoBkdAceORcu8K5WgHS61oCEdAtn2QplSS/3V9lChoBkdAcWhF4s3AEmgHS69oCEdAtn2ZsnAqNXV9lChoBkdAcz/HZsbedmgHS81oCEdAtn2d/c32mHV9lChoBkdAcyMWY4Qz12gHS6VoCEdAtn2gskIHDHV9lChoBkdAcS6erdWQwWgHS6FoCEdAtn2qcmShanV9lChoBkdAca/9pAUtZmgHS+VoCEdAtn3EVoHs1XV9lChoBkdAc+wa7VawEGgHS89oCEdAtn3q3solU3V9lChoBkdAc2DHMEA5rGgHS7hoCEdAtn4EdcSoO3V9lChoBkdAckQ/cFhXsGgHS7toCEdAtn4Hps41g3V9lChoBkdAck8N+LFXJmgHS6VoCEdAtn4KhM8HOnV9lChoBkdActO4SYgJTmgHS8RoCEdAtn4lmkFfRnV9lChoBkdAcmkrM1TBImgHS85oCEdAtn5OwzLwF3V9lChoBkdAc0213t8eCGgHS9poCEdAtn5SH9FWn3V9lChoBkdAcinHMlkYoGgHS9RoCEdAtn5XUVi4KHV9lChoBkdAca4aNMoMKGgHS6ZoCEdAtn5i2lVLjHV9lChoBkdAcTiHCXQdCGgHS6JoCEdAtn5ulzltCXV9lChoBkdAcN1ySFGoaWgHS7BoCEdAtn59eIEbHnV9lChoBkdAchNq94/u9mgHS8toCEdAtn6DPVurInV9lChoBkdAdAqOHFglW2gHS8toCEdAtn6Nwn6VMXV9lChoBkdAcO6xesxO+WgHS8doCEdAtn6ppsXSB3V9lChoBkdAcyEGr0aqCGgHS7JoCEdAtn6sIdELIHV9lChoBkdAc9nY77sOXmgHS+poCEdAtn7EqkM1CXV9lChoBkdAczCTsIE8rGgHS7VoCEdAtn7yuIRAbHV9lChoBkdAciJE4vN/v2gHS7ZoCEdAtn8XlPrOaHV9lChoBkdAcqwg75mAb2gHS9FoCEdAtn8eQbMot3V9lChoBkdAch+0Sh8IA2gHS7BoCEdAtn89w97ngnV9lChoBkdAccgY2sJY1mgHS6NoCEdAtn89vOyE+XV9lChoBkdAcv2fQ8fV7WgHS+VoCEdAtn89BC2MKnV9lChoBkdAbr4BRyfcvmgHS65oCEdAtn9Ao4MnZ3V9lChoBkdAc5uood+5OWgHS8FoCEdAtn9RWo3rEHV9lChoBkdAUSfVx0dRzmgHS5loCEdAtn9aVrylN3V9lChoBkdAcOl+KCQLeGgHS6loCEdAtn9lRYRuj3V9lChoBkdAcuToo/iYLWgHS9VoCEdAtn+G64Ds+nV9lChoBkdAcpDgpSaVlmgHS6poCEdAtn+JmRNh3XV9lChoBkdAcmbpX6qKg2gHS6xoCEdAtn+PeTFERnV9lChoBkdAcxNz06HTJGgHS+JoCEdAtn+myt3fRHV9lChoBkdAcvX9Mbm2cGgHS65oCEdAtn+qC9RJmXV9lChoBkdAcHC77sOXmmgHS7loCEdAtn/muQp4KXV9lChoBkdAchQzhgmZ3WgHS6hoCEdAtoAZeNT99HV9lChoBkdAcl6x20Re1WgHS8ZoCEdAtoAk1k1/D3V9lChoBkdAcgaaFEiMYWgHS9VoCEdAtoA0xIre7HV9lChoBkdAcSv3/xUedWgHS5toCEdAtoA13HJcPnV9lChoBkdAc/MattALRmgHS75oCEdAtoA7PQfIS3V9lChoBkdAcZVwHqu8smgHS7xoCEdAtoBMwrUb1nV9lChoBkdAc9LTyauwHWgHS9FoCEdAtoBX0pVjqnV9lChoBkdAczf9XtBv72gHS8FoCEdAtoBdGSZBs3V9lChoBkdAcxAP2f02+GgHS+FoCEdAtoBqhZha1XV9lChoBkdAccXnqVyFPGgHS6toCEdAtoBzrY5DJHV9lChoBkdAc6RoDxLCemgHS7doCEdAtoCAvzvqknV9lChoBkdAcvcoNNJvpGgHS55oCEdAtoCDXDm8unV9lChoBkdAcZ3Elme18mgHS7VoCEdAtoCFlrdnCnV9lChoBkdAcfc7aZhKDmgHS8FoCEdAtoCtMSK3u3V9lChoBkdAcu4+Jxeb/mgHS7ZoCEdAtoDgtEofCHV9lChoBkdATpCh8IAwPGgHS3xoCEdAtoD+mIj4YnV9lChoBkdAcYjB/qgRLGgHS6BoCEdAtoEPB3zMA3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1798, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}