VERSIL91 commited on
Commit
b60a0e3
1 Parent(s): 261845a

End of training

Browse files
Files changed (2) hide show
  1. README.md +165 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 16df315b-76cd-4973-85f4-13588e78c095
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ accelerate_config:
21
+ dynamo_backend: inductor
22
+ mixed_precision: bf16
23
+ num_machines: 1
24
+ num_processes: auto
25
+ use_cpu: false
26
+ adapter: lora
27
+ base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
28
+ bf16: auto
29
+ chat_template: llama3
30
+ dataset_prepared_path: null
31
+ datasets:
32
+ - data_files:
33
+ - 74fcc4861c1805fc_train_data.json
34
+ ds_type: json
35
+ format: custom
36
+ path: /workspace/input_data/74fcc4861c1805fc_train_data.json
37
+ type:
38
+ field_instruction: nl
39
+ field_output: cmd
40
+ format: '{instruction}'
41
+ no_input_format: '{instruction}'
42
+ system_format: '{system}'
43
+ system_prompt: ''
44
+ debug: null
45
+ deepspeed: null
46
+ device_map: auto
47
+ early_stopping_patience: null
48
+ eval_max_new_tokens: 128
49
+ eval_table_size: null
50
+ evals_per_epoch: 4
51
+ flash_attention: false
52
+ fp16: null
53
+ fsdp: null
54
+ fsdp_config: null
55
+ gradient_accumulation_steps: 16
56
+ gradient_checkpointing: true
57
+ group_by_length: false
58
+ hub_model_id: VERSIL91/16df315b-76cd-4973-85f4-13588e78c095
59
+ hub_repo: null
60
+ hub_strategy: checkpoint
61
+ hub_token: null
62
+ learning_rate: 0.0001
63
+ local_rank: null
64
+ logging_steps: 1
65
+ lora_alpha: 16
66
+ lora_dropout: 0.05
67
+ lora_fan_in_fan_out: null
68
+ lora_model_dir: null
69
+ lora_r: 8
70
+ lora_target_linear: true
71
+ lora_target_modules:
72
+ - q_proj
73
+ - v_proj
74
+ lr_scheduler: cosine
75
+ max_memory:
76
+ 0: 70GiB
77
+ max_steps: 5
78
+ micro_batch_size: 2
79
+ mlflow_experiment_name: /tmp/74fcc4861c1805fc_train_data.json
80
+ model_type: AutoModelForCausalLM
81
+ num_epochs: 1
82
+ optimizer: adamw_bnb_8bit
83
+ output_dir: miner_id_24
84
+ pad_to_sequence_len: true
85
+ quantization_config:
86
+ llm_int8_enable_fp32_cpu_offload: true
87
+ load_in_8bit: true
88
+ resume_from_checkpoint: null
89
+ s2_attention: null
90
+ sample_packing: false
91
+ saves_per_epoch: 4
92
+ sequence_len: 512
93
+ special_tokens:
94
+ pad_token: </s>
95
+ strict: false
96
+ tf32: false
97
+ tokenizer_type: AutoTokenizer
98
+ torch_compile: true
99
+ train_on_inputs: false
100
+ trust_remote_code: true
101
+ val_set_size: 0.05
102
+ wandb_entity: null
103
+ wandb_mode: online
104
+ wandb_name: 16df315b-76cd-4973-85f4-13588e78c095
105
+ wandb_project: Gradients-On-Demand
106
+ wandb_run: your_name
107
+ wandb_runid: 16df315b-76cd-4973-85f4-13588e78c095
108
+ warmup_steps: 10
109
+ weight_decay: 0.0
110
+ xformers_attention: null
111
+
112
+ ```
113
+
114
+ </details><br>
115
+
116
+ # 16df315b-76cd-4973-85f4-13588e78c095
117
+
118
+ This model is a fine-tuned version of [HuggingFaceH4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceH4/tiny-random-LlamaForCausalLM) on the None dataset.
119
+ It achieves the following results on the evaluation set:
120
+ - Loss: 10.3633
121
+
122
+ ## Model description
123
+
124
+ More information needed
125
+
126
+ ## Intended uses & limitations
127
+
128
+ More information needed
129
+
130
+ ## Training and evaluation data
131
+
132
+ More information needed
133
+
134
+ ## Training procedure
135
+
136
+ ### Training hyperparameters
137
+
138
+ The following hyperparameters were used during training:
139
+ - learning_rate: 0.0001
140
+ - train_batch_size: 2
141
+ - eval_batch_size: 2
142
+ - seed: 42
143
+ - gradient_accumulation_steps: 16
144
+ - total_train_batch_size: 32
145
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
146
+ - lr_scheduler_type: cosine
147
+ - lr_scheduler_warmup_steps: 10
148
+ - training_steps: 5
149
+
150
+ ### Training results
151
+
152
+ | Training Loss | Epoch | Step | Validation Loss |
153
+ |:-------------:|:------:|:----:|:---------------:|
154
+ | 10.3571 | 0.0037 | 1 | 10.3634 |
155
+ | 10.3617 | 0.0075 | 2 | 10.3634 |
156
+ | 10.3545 | 0.0150 | 4 | 10.3633 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.13.2
162
+ - Transformers 4.46.0
163
+ - Pytorch 2.5.0+cu124
164
+ - Datasets 3.0.1
165
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cdf095142de6770ea8af8133b828e239d64fd47e78a21fde93d6500a578b6a5
3
+ size 33666