VERSIL91 commited on
Commit
c428e7a
·
verified ·
1 Parent(s): c7fc2d8

End of training

Browse files
Files changed (2) hide show
  1. README.md +163 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Yarn-Llama-2-7b-128k
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 413f0c3b-ec1e-41fe-ad99-76fdfa5a1a08
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ accelerate_config:
21
+ dynamo_backend: inductor
22
+ mixed_precision: bf16
23
+ num_machines: 1
24
+ num_processes: auto
25
+ use_cpu: false
26
+ adapter: lora
27
+ base_model: NousResearch/Yarn-Llama-2-7b-128k
28
+ bf16: auto
29
+ chat_template: llama3
30
+ dataset_prepared_path: null
31
+ datasets:
32
+ - data_files:
33
+ - 6562647c9b6af2ce_train_data.json
34
+ ds_type: json
35
+ format: custom
36
+ path: /workspace/input_data/6562647c9b6af2ce_train_data.json
37
+ type:
38
+ field_instruction: section_1
39
+ field_output: company_name
40
+ format: '{instruction}'
41
+ no_input_format: '{instruction}'
42
+ system_format: '{system}'
43
+ system_prompt: ''
44
+ debug: null
45
+ deepspeed: null
46
+ device_map: auto
47
+ early_stopping_patience: null
48
+ eval_max_new_tokens: 128
49
+ eval_table_size: null
50
+ evals_per_epoch: 4
51
+ flash_attention: false
52
+ fp16: null
53
+ fsdp: null
54
+ fsdp_config: null
55
+ gradient_accumulation_steps: 16
56
+ gradient_checkpointing: true
57
+ group_by_length: false
58
+ hub_model_id: VERSIL91/413f0c3b-ec1e-41fe-ad99-76fdfa5a1a08
59
+ hub_repo: null
60
+ hub_strategy: checkpoint
61
+ hub_token: null
62
+ learning_rate: 0.0001
63
+ local_rank: null
64
+ logging_steps: 1
65
+ lora_alpha: 16
66
+ lora_dropout: 0.05
67
+ lora_fan_in_fan_out: null
68
+ lora_model_dir: null
69
+ lora_r: 8
70
+ lora_target_linear: true
71
+ lora_target_modules:
72
+ - q_proj
73
+ - v_proj
74
+ lr_scheduler: cosine
75
+ max_memory:
76
+ 0: 70GiB
77
+ max_steps: 5
78
+ micro_batch_size: 2
79
+ mlflow_experiment_name: /tmp/6562647c9b6af2ce_train_data.json
80
+ model_type: AutoModelForCausalLM
81
+ num_epochs: 1
82
+ optimizer: adamw_bnb_8bit
83
+ output_dir: miner_id_24
84
+ pad_to_sequence_len: true
85
+ quantization_config:
86
+ llm_int8_enable_fp32_cpu_offload: true
87
+ load_in_8bit: true
88
+ resume_from_checkpoint: null
89
+ s2_attention: null
90
+ sample_packing: false
91
+ saves_per_epoch: 4
92
+ sequence_len: 512
93
+ strict: false
94
+ tf32: false
95
+ tokenizer_type: AutoTokenizer
96
+ torch_compile: true
97
+ train_on_inputs: false
98
+ trust_remote_code: true
99
+ val_set_size: 0.05
100
+ wandb_entity: null
101
+ wandb_mode: online
102
+ wandb_name: 413f0c3b-ec1e-41fe-ad99-76fdfa5a1a08
103
+ wandb_project: Gradients-On-Demand
104
+ wandb_run: your_name
105
+ wandb_runid: 413f0c3b-ec1e-41fe-ad99-76fdfa5a1a08
106
+ warmup_steps: 10
107
+ weight_decay: 0.0
108
+ xformers_attention: null
109
+
110
+ ```
111
+
112
+ </details><br>
113
+
114
+ # 413f0c3b-ec1e-41fe-ad99-76fdfa5a1a08
115
+
116
+ This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset.
117
+ It achieves the following results on the evaluation set:
118
+ - Loss: nan
119
+
120
+ ## Model description
121
+
122
+ More information needed
123
+
124
+ ## Intended uses & limitations
125
+
126
+ More information needed
127
+
128
+ ## Training and evaluation data
129
+
130
+ More information needed
131
+
132
+ ## Training procedure
133
+
134
+ ### Training hyperparameters
135
+
136
+ The following hyperparameters were used during training:
137
+ - learning_rate: 0.0001
138
+ - train_batch_size: 2
139
+ - eval_batch_size: 2
140
+ - seed: 42
141
+ - gradient_accumulation_steps: 16
142
+ - total_train_batch_size: 32
143
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
144
+ - lr_scheduler_type: cosine
145
+ - lr_scheduler_warmup_steps: 10
146
+ - training_steps: 5
147
+
148
+ ### Training results
149
+
150
+ | Training Loss | Epoch | Step | Validation Loss |
151
+ |:-------------:|:------:|:----:|:---------------:|
152
+ | 60.1585 | 0.0012 | 1 | 3.6846 |
153
+ | 62.8862 | 0.0024 | 2 | nan |
154
+ | 57.8446 | 0.0049 | 4 | nan |
155
+
156
+
157
+ ### Framework versions
158
+
159
+ - PEFT 0.13.2
160
+ - Transformers 4.46.0
161
+ - Pytorch 2.5.0+cu124
162
+ - Datasets 3.0.1
163
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb76c30e47d7999367a8d9e075733f2de5da924f5a63295556d6b0f8b2676eda
3
+ size 80115210