ValkyriaLenneth commited on
Commit
87c8e56
1 Parent(s): d86e03b

update model

Browse files
Files changed (1) hide show
  1. README.md +26 -10
README.md CHANGED
@@ -11,17 +11,22 @@ There are not so much resource for Chinese Longformer or long-sequence-level chi
11
  您可以使用谷歌云盘或百度网盘下载我们的模型
12
  You could get Longformer_zh from Google Drive or Baidu Yun.
13
 
14
- - Google Drive: https://drive.google.com/file/d/1h0oh6hmjc0w3n21VburjiZPJbChRSS4n/view?usp=sharing
15
- - 百度云: 链接:https://pan.baidu.com/s/1tgAOd7SuWxbwTRSagN0lyg 提取码:bdgb
16
 
17
  我们同样提供了Huggingface的自动下载
18
  We also provide auto load with HuggingFace.Transformers.
19
  ```
20
  from Longformer_zh import LongformerZhForMaksedLM
21
- LongformerZhForMaksedLM.from_pretrained('Longformer_zh')
22
  ```
23
 
24
  ## 注意事项 | Notice
 
 
 
 
 
25
  - 区别于英文原版Longformer, 中文Longformer的基础是Roberta_zh模型,其本质上属于 `Transformers.BertModel` 而非 `RobertaModel`, 因此无法使用原版代码直接加载。
26
  - Different with origin English Longformer, Longformer_Zh is based on Roberta_zh which is a subclass of `Transformers.BertModel` not `RobertaModel`. Thus it is impossible to load it with origin code.
27
  - 我们提供了修改后的中文Longformer文件,您可以使用其加载参数。
@@ -49,16 +54,11 @@ LongformerZhForMaksedLM.from_pretrained('Longformer_zh')
49
  - 更多细节可以参考我们的预训练脚本
50
  - For more details, please check our pretraining scripts.
51
 
52
- ## 更新计划 | Update Plan
53
- - 我们首先会放出预训练3K-steps的模型
54
- - We released our 3K-steps pretrained model.
55
- - 在八月将开源训练15K-steps的模型
56
- - We will release our 15K-steps full pretrained model in August.
57
 
58
  ## 效果测试 | Evaluation
59
  ### CCF Sentiment Analysis
60
- - 由于中文超长文本级别任务稀缺,我们仅采用CCF-Sentiment-Analysis任务进行测试
61
- - Since it is hard to acquire open-sourced long sequence level chinese NLP task, we only use CCF-Sentiment-Analysis for evaluation.
62
 
63
  |Model|Dev F|
64
  |----|----|
@@ -78,6 +78,22 @@ LongformerZhForMaksedLM.from_pretrained('Longformer_zh')
78
  |Longformer before training| 14.78|
79
  |Longformer after training| 3.10|
80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  ## 致谢
82
  感谢东京工业大学 奥村·船越研究室 提供算力。
83
 
 
11
  您可以使用谷歌云盘或百度网盘下载我们的模型
12
  You could get Longformer_zh from Google Drive or Baidu Yun.
13
 
14
+ - Google Drive: https://drive.google.com/file/d/1IDJ4aVTfSFUQLIqCYBtoRpnfbgHPoxB4/view?usp=sharing
15
+ - 百度云: 链接:https://pan.baidu.com/s/1HaVDENx52I7ryPFpnQmq1w 提取码:y601
16
 
17
  我们同样提供了Huggingface的自动下载
18
  We also provide auto load with HuggingFace.Transformers.
19
  ```
20
  from Longformer_zh import LongformerZhForMaksedLM
21
+ LongformerZhForMaksedLM.from_pretrained('ValkyriaLenneth/longformer_zh')
22
  ```
23
 
24
  ## 注意事项 | Notice
25
+ - 直接使用 `transformers.LongformerModel.from_pretrained` 加载模型
26
+ - Please use `transformers.LongformerModel.from_pretrained` to load the model directly
27
+
28
+ - 以下内容已经被弃用
29
+ - The following notices are abondoned, please ignore them.
30
  - 区别于英文原版Longformer, 中文Longformer的基础是Roberta_zh模型,其本质上属于 `Transformers.BertModel` 而非 `RobertaModel`, 因此无法使用原版代码直接加载。
31
  - Different with origin English Longformer, Longformer_Zh is based on Roberta_zh which is a subclass of `Transformers.BertModel` not `RobertaModel`. Thus it is impossible to load it with origin code.
32
  - 我们提供了修改后的中文Longformer文件,您可以使用其加载参数。
 
54
  - 更多细节可以参考我们的预训练脚本
55
  - For more details, please check our pretraining scripts.
56
 
 
 
 
 
 
57
 
58
  ## 效果测试 | Evaluation
59
  ### CCF Sentiment Analysis
60
+ - 由于中文超长文本级别任务稀缺,我们采用了CCF-Sentiment-Analysis任务进行测试
61
+ - Since it is hard to acquire open-sourced long sequence level chinese NLP task, we use CCF-Sentiment-Analysis for evaluation.
62
 
63
  |Model|Dev F|
64
  |----|----|
 
78
  |Longformer before training| 14.78|
79
  |Longformer after training| 3.10|
80
 
81
+ ### CMRC(Chinese Machine Reading Comprehension)
82
+ |Model|F1|EM|
83
+ |---|---|---|
84
+ |Bert|85.87|64.90|
85
+ |Roberta|86.45|66.57|
86
+ |Longformer_zh|86.15|66.84|
87
+
88
+ ### Chinese Coreference Resolution
89
+ |Model|Conll-F1|Precision|Recall|
90
+ |---|---|---|---|
91
+ |Bert|66.82|70.30|63.67|
92
+ |Roberta|67.77|69.28|66.32|
93
+ |Longformer_zh|67.81|70.13|65.64|
94
+
95
+
96
+
97
  ## 致谢
98
  感谢东京工业大学 奥村·船越研究室 提供算力。
99