VictorYeste
commited on
Commit
•
7a79a25
1
Parent(s):
8ae3d09
Update README.md
Browse files
README.md
CHANGED
@@ -10,6 +10,8 @@ model-index:
|
|
10 |
- name: deberta-based-human-value-stance-detection
|
11 |
results: []
|
12 |
---
|
|
|
|
|
13 |
The Human Value Detection at CLEF 2024 task consists of two sub-tasks: the first is to detect the presence or absence of each of these 19 values, while the second is to detect whether the value is attained or constrained.
|
14 |
|
15 |
Our system introduces a cascade model approach for the detection and stance classification of the predefined set of human values. It consists of two subsystems: one for detecting the presence of each human value and another for establishing the stance (if the sentence attains or constrains) of each human value. Each subsystem is designed and fine-tuned separately using a DeBERTa model as base.
|
@@ -20,3 +22,22 @@ Our system introduces a cascade model approach for the detection and stance clas
|
|
20 |
Given that subsystem 1 focuses on detecting the presence of human values in the text, and subsystem 2 focuses on the stances towards each detected human value, this cascade model approach improves the granularity of text classification.
|
21 |
|
22 |
This model is the responsible of the Subsystem 2 and accomplishes the second sub-task.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
- name: deberta-based-human-value-stance-detection
|
11 |
results: []
|
12 |
---
|
13 |
+
# Description
|
14 |
+
|
15 |
The Human Value Detection at CLEF 2024 task consists of two sub-tasks: the first is to detect the presence or absence of each of these 19 values, while the second is to detect whether the value is attained or constrained.
|
16 |
|
17 |
Our system introduces a cascade model approach for the detection and stance classification of the predefined set of human values. It consists of two subsystems: one for detecting the presence of each human value and another for establishing the stance (if the sentence attains or constrains) of each human value. Each subsystem is designed and fine-tuned separately using a DeBERTa model as base.
|
|
|
22 |
Given that subsystem 1 focuses on detecting the presence of human values in the text, and subsystem 2 focuses on the stances towards each detected human value, this cascade model approach improves the granularity of text classification.
|
23 |
|
24 |
This model is the responsible of the Subsystem 2 and accomplishes the second sub-task.
|
25 |
+
|
26 |
+
# How to use
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import pipeline
|
30 |
+
|
31 |
+
model = "VictorYeste/deberta-based-human-value-stance-detection"
|
32 |
+
tokenizer = "VictorYeste/deberta-based-human-value-stance-detection"
|
33 |
+
|
34 |
+
stance_detection = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None)
|
35 |
+
|
36 |
+
stance_detection("We are not humble. Humility")
|
37 |
+
```
|
38 |
+
|
39 |
+
This returns the following:
|
40 |
+
```
|
41 |
+
[[{'label': 'constrained', 'score': 0.7598766088485718},
|
42 |
+
{'label': 'attained', 'score': 0.24012333154678345}]]
|
43 |
+
```
|