File size: 2,186 Bytes
71cd717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8302752293577982
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9810
- Accuracy: 0.8303
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00010445576414788915
- train_batch_size: 1024
- eval_batch_size: 1024
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6492 | 1.0 | 66 | 1.2487 | 0.7844 |
| 1.0585 | 2.0 | 132 | 1.0561 | 0.8073 |
| 0.8081 | 3.0 | 198 | 0.9585 | 0.8154 |
| 0.6595 | 4.0 | 264 | 0.9454 | 0.8268 |
| 0.5681 | 5.0 | 330 | 0.9372 | 0.8257 |
| 0.512 | 6.0 | 396 | 0.9471 | 0.8303 |
| 0.4868 | 7.0 | 462 | 0.9803 | 0.8291 |
| 0.4643 | 8.0 | 528 | 0.9699 | 0.8326 |
| 0.4498 | 9.0 | 594 | 0.9791 | 0.8280 |
| 0.4402 | 10.0 | 660 | 0.9810 | 0.8303 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|