--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: model results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8302752293577982 --- # model This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9810 - Accuracy: 0.8303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00010445576414788915 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6492 | 1.0 | 66 | 1.2487 | 0.7844 | | 1.0585 | 2.0 | 132 | 1.0561 | 0.8073 | | 0.8081 | 3.0 | 198 | 0.9585 | 0.8154 | | 0.6595 | 4.0 | 264 | 0.9454 | 0.8268 | | 0.5681 | 5.0 | 330 | 0.9372 | 0.8257 | | 0.512 | 6.0 | 396 | 0.9471 | 0.8303 | | 0.4868 | 7.0 | 462 | 0.9803 | 0.8291 | | 0.4643 | 8.0 | 528 | 0.9699 | 0.8326 | | 0.4498 | 9.0 | 594 | 0.9791 | 0.8280 | | 0.4402 | 10.0 | 660 | 0.9810 | 0.8303 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3