--- language: - mr license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small MR v3 - Viraj Patil results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: mr split: None args: 'config: mr, split: test' metrics: - name: Wer type: wer value: 43.24846707544655 --- # Whisper Small MR v3 - Viraj Patil This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4696 - Wer: 43.2485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0966 | 4.0 | 1000 | 0.2840 | 45.4146 | | 0.007 | 8.0 | 2000 | 0.3871 | 44.2482 | | 0.0005 | 12.0 | 3000 | 0.4502 | 43.2618 | | 0.0002 | 16.0 | 4000 | 0.4696 | 43.2485 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.1.2 - Datasets 2.21.0 - Tokenizers 0.19.1