File size: 36,075 Bytes
0553a59 4af3b7a 0553a59 4e636d4 9fb853f 4e636d4 0553a59 4e636d4 4af3b7a 0553a59 2202d00 4e636d4 0553a59 dc2b1a4 9942389 9767856 0553a59 4559ee4 0553a59 4559ee4 0553a59 4af3b7a 4e636d4 4af3b7a 0553a59 4af3b7a 0553a59 4af3b7a 4e636d4 4af3b7a 0553a59 4e636d4 0553a59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
import logging
import random
import torch
import webvtt
import os
import cv2
from torchvision import transforms
import soundfile as sf
import moviepy.editor as mp
from PIL import Image
from moviepy.editor import VideoFileClip
import torch
import random
import torch.backends.cudnn as cudnn
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
from .registry import registry
from .blip_processors import *
from .blip2 import Blip2Base, disabled_train
from .conversation import Conversation, SeparatorStyle, StoppingCriteriaList, StoppingCriteriaSub
from transformers import LlamaTokenizer
from transformers import BitsAndBytesConfig
from transformers import AutoConfig, AutoTokenizer
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
import time
import numpy as np
import os
from transformers import PretrainedConfig
from transformers import PreTrainedModel
from .conversation import CONV_VISION
import cv2
def extract_audio(video_path, audio_path):
video_clip = mp.VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
def generate_subtitles(video_path):
video_id=video_path.split('/')[-1].split('.')[0]
audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3'
os.makedirs("workspace/inference_subtitles/mp3",exist_ok=True)
try:
extract_audio(video_path,audio_path)
print("successfully extracted")
os.system(f"whisper {audio_path} --language English --model large --output_format vtt --output_dir workspace/inference_subtitles/")
# remove the audio file
os.system(f"rm {audio_path}")
print("subtitle successfully generated")
return f"workspace/inference_subtitles/{video_id}"+'.vtt'
except Exception as e:
print("error",e)
print("error",video_path)
return None
class minigpt4_video_config(PretrainedConfig):
model_type="minigpt4_video"
PRETRAINED_MODEL_CONFIG_DICT = {
"minigpt4_video": "configs/models/minigpt4.yaml",
}
def __init__(
self,
omg_config:dict = {},
**kwargs,
):
for key, value in omg_config.items():
setattr(self, key, value)
super().__init__(**kwargs)
@registry.register_model("mini_gpt4_llama_v2")
class MiniGPT4_Video(Blip2Base, PreTrainedModel):
"""
BLIP2 GPT-LLAMA model.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"minigpt4_video": "minigpt4/configs/models/minigpt4.yaml",
}
config_class=minigpt4_video_config
def __init__(
self,
cfg={},
):
## loop through the config minigpt4_video_config object and set the attributes
# if isinstance(cfg, minigpt4_video_config):
try:
cfg = cfg.to_dict()
except:
pass
for key, value in cfg.items():
try:
setattr(self, key, value)
except:
print(f"Error setting attribute {key} with value {value}")
PreTrainedModel.__init__(self, minigpt4_video_config(cfg))
Blip2Base.__init__(self)
vis_processor_cfg = {"name": "blip2_image_train","image_size": 224}
self.vis_processor = registry.get_processor_class(vis_processor_cfg["name"])
self.vis_processor = self.vis_processor.from_config(vis_processor_cfg)
self.CONV_VISION = CONV_VISION
if "Mistral" in self.llama_model:
from .modeling_mistral import MistralForCausalLM as llm_model
print("Mistral model")
self.model_type = "Mistral"
else:
from .modeling_llama_v2 import LlamaForCausalLM as llm_model
print("Llama model")
self.model_type = "Llama"
self.tokenizer = self.init_tokenizer()
print("token pooling", self.token_pooling)
if self.freeze_vit:
# self.vit_precision="fp32"
print("vit precision", self.vit_precision)
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
self.vit_model, self.img_size, self.drop_path_rate, self.use_grad_checkpoint, self.vit_precision
)
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
logging.info("freeze vision encoder")
print("freeze the vision encoder")
else:
self.vit_precision="fp32"
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
self.vit_model, self.img_size, self.drop_path_rate, self.use_grad_checkpoint, self.vit_precision
)
print("unfreeze the vision encoder")
print('Loading VIT Done')
print('Loading LLAMA')
self.B_SYS, self.E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
token=os.environ.get("HF_TKN")
self.llama_tokenizer = LlamaTokenizer.from_pretrained(self.llama_model,use_fast=False,token=token) #
self.llama_tokenizer.pad_token = "$$"
# use fastv
self.use_fastv = False
print("self.low_resource",self.low_resource)
if self.low_resource:
self.llama_model = llm_model.from_pretrained(
self.llama_model,
torch_dtype=torch.float16,
# torch_dtype = torch.bfloat16,
load_in_8bit=True,
# device_map = "balanced"
# device_map="auto",
device_map={'':torch.cuda.current_device()},token=token
# device_map={'':0}
)
else:
self.llama_model = llm_model.from_pretrained(
self.llama_model,
torch_dtype=torch.float16,token=token
)
# self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
self.llama_model = prepare_model_for_int8_training(self.llama_model)
loraconfig = LoraConfig(
r=self.lora_r,
lora_alpha=self.lora_alpha,
target_modules=self.lora_target_modules,
lora_dropout=self.lora_dropout,
bias="none",
task_type="CAUSAL_LM"
)
self.llama_model = get_peft_model(self.llama_model, loraconfig)
self.llama_model.print_trainable_parameters()
if self.use_grad_checkpoint_llm:
self.llama_model.gradient_checkpointing_enable()
print('Loading LLAMA Done')
if self.token_pooling:
self.llama_proj = nn.Linear(
1408*4, self.llama_model.config.hidden_size
)
else:
self.llama_proj = nn.Linear(
1408, self.llama_model.config.hidden_size
)
if self.prompt_path:
with open(self.prompt_path, 'r') as f:
raw_prompts = f.read().splitlines()
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<ImageHere>" in raw_prompt]
self.prompt_list = [self.prompt_template.format(p) for p in filted_prompts]
print('Load {} training prompts'.format(len(self.prompt_list)))
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
else:
self.prompt_list = []
def prepare_input(self,video_path,subtitle_path,instruction):
cap = cv2.VideoCapture(video_path)
if subtitle_path is not None:
# Load the VTT subtitle file
vtt_file = webvtt.read(subtitle_path)
print("subtitle loaded successfully")
clip = VideoFileClip(video_path)
total_num_frames = int(clip.duration * clip.fps)
# print("Video duration = ",clip.duration)
clip.close()
else :
# calculate the total number of frames in the video using opencv
total_num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if self.model_type == "Mistral":
max_images_length = 90
max_sub_len = 800
else:
max_images_length = 45
max_sub_len = 400
images = []
frame_count = 0
sampling_interval = int(total_num_frames / max_images_length)
if sampling_interval == 0:
sampling_interval = 1
img_placeholder = ""
subtitle_text_in_interval = ""
history_subtitles = {}
raw_frames=[]
number_of_words=0
transform=transforms.Compose([
transforms.ToPILImage(),
])
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle
# we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds
if subtitle_path is not None:
for subtitle in vtt_file:
sub=subtitle.text.replace('\n',' ')
if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval:
if not history_subtitles.get(sub,False):
subtitle_text_in_interval+=sub+" "
history_subtitles[sub]=True
break
if frame_count % sampling_interval == 0:
raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB)))
frame = transform(frame[:,:,::-1]) # convert to RGB
frame = self.vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len:
img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
number_of_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
frame_count += 1
if len(images) >= max_images_length:
break
while len(images) < max_images_length:
images.append(images[-1])
img_placeholder += '<Img><ImageHere>'
cap.release()
cv2.destroyAllWindows()
if len(images) == 0:
# skip the video if no frame is extracted
return None,None
images = torch.stack(images)
instruction = img_placeholder + '\n' + instruction
return images,instruction
def encode_img(self, image):
device = image.device
if len(image.shape) > 4:
image = image.reshape(-1, *image.shape[-3:]) # for video input flatten the batch and time dimension (4,50,3,224,224) -> (200,3,224,224)
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device) # (200,3,224,224) -> (200,257,1408)
image_embeds = image_embeds[:,1:,:] # remove the first token (CLS) (200,256,1408)
bs, pn, hs = image_embeds.shape
if self.token_pooling: # concat the each 4 tokens into one token (200,64,5632)
image_embeds = image_embeds.view(bs, int(pn/4), int(hs*4)) # (200,64,5632)
inputs_llama = self.llama_proj(image_embeds) # project to llama input size (200,64,5632) -> (200,64,4096)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
return inputs_llama, atts_llama
def get_context_emb(self, prompt, img_list):
img_device = img_list[0].device
prompt_segs = prompt.split('<ImageHere>')
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
seg_tokens = [
self.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i==0).to(img_device).input_ids # only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs
def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None):
if prompts is None or len(prompts) == 0:
# prompts is not provided, just return the original image embedding
return img_embeds, atts_img
elif img_embeds is None:
# prompt is provided but there is no image embedding. return the prompt embedding in right padding
self.llama_tokenizer.padding_side = "right"
prompt_tokens = self.llama_tokenizer(
prompts,
return_tensors="pt",
padding="max_length",
add_special_tokens=False
).to(self.device)
prompt_embeds = self.embed_tokens(prompt_tokens.input_ids)
atts_prompt = prompt_tokens.attention_mask
return prompt_embeds, atts_prompt
else:
# return the multi-modal embedding in right padding
emb_lists = []
if type(prompts) == str:
prompts = [prompts] * len(img_embeds)
for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)):
pn = each_img_embed.shape[-2]
if lengths is not None:
each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1])
each_img_embed = each_img_embed[:lengths[idx] * pn]
p_segs = each_prompt.split('<ImageHere>')
interleave_emb = []
for idx, seg in enumerate(p_segs[:-1]):
p_tokens = self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_embed = self.embed_tokens(p_tokens.input_ids)
interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx*pn:(idx+1)*pn]], dim=1))
wrapped_emb = torch.cat(interleave_emb, dim=1)
p_tokens = self.llama_tokenizer(p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_embed = self.embed_tokens(p_tokens.input_ids)
wrapped_emb = torch.cat([wrapped_emb,p_embed], dim=1)
emb_lists.append(wrapped_emb)
emb_lens = [emb.shape[1] for emb in emb_lists]
pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device))
# max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len
max_length = self.max_context_len
wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone()
wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device)
for i, emb in enumerate(emb_lists):
length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len
wrapped_embs[i, :length] = emb[:, :length]
wrapped_atts[i, :length] = 1
return wrapped_embs, wrapped_atts
def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts):
"""
Concatenate the batched input embedding and batched output embedding together.
Both the input and the output embedding should be right padded.
"""
input_lens = []
cat_embs = []
cat_atts = []
for i in range(input_embs.size(0)):
input_len = input_atts[i].sum()
input_lens.append(input_len)
cat_embs.append(
torch.cat([
input_embs[i][:input_len],
output_embs[i],
input_embs[i][input_len:]
])
)
cat_atts.append(
torch.cat([
input_atts[i][:input_len],
output_atts[i],
input_atts[i][input_len:]
])
)
cat_embs = torch.stack(cat_embs)
cat_atts = torch.stack(cat_atts)
return cat_embs, cat_atts, input_lens
def get_conv_emb(self, conv_q, conv_a, conv_img):
"""concatenate conversation and make sure the model is only trained to regress the answer"""
regress_embs_list = []
targets_list = []
batch_size = len(conv_q)
for batch_idx in range(batch_size):
questions, answers = conv_q[batch_idx], conv_a[batch_idx]
assigned_imgs = conv_img[batch_idx]
questions = [self.prompt_wrap(
img_embeds=img,
atts_img=None,
prompts=[q],
lengths=[img.shape[1]] if img is not None else None) for q, img in zip(questions, assigned_imgs)]
q_embs = [emb for emb, _ in questions]
answers = [self.llama_tokenizer(a, return_tensors="pt", add_special_tokens=False).to(self.device) for a in answers]
cur_emb = []
cur_target = []
for i in range(len(questions)):
cur_emb.append(q_embs[i])
cur_target.append(torch.ones_like(q_embs[i][..., 0], dtype=torch.int) * -100)
cur_emb.append(self.embed_tokens(answers[i].input_ids))
cur_target.append(answers[i].input_ids)
cur_emb = torch.cat(cur_emb, dim=1)
cur_target = torch.cat(cur_target, dim=1)
regress_embs_list.append(cur_emb)
targets_list.append(cur_target)
max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len)
regress_embeds = torch.zeros([batch_size, max_len, cur_emb.shape[-1]], device=self.device)
regress_attn = torch.zeros([batch_size, max_len], dtype=torch.int, device=self.device)
targets = torch.ones([batch_size, max_len], dtype=torch.long, device=self.device) * -100
for batch_idx in range(batch_size):
cur_len = regress_embs_list[batch_idx].shape[1]
regress_embeds[batch_idx, :cur_len] = regress_embs_list[batch_idx][0, :max_len]
regress_attn[batch_idx, :cur_len] = 1
targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len]
return regress_embeds, regress_attn, targets
def preparing_embedding(self, samples):
def remove_special_tokens(data):
# if "instruction_input" in data:
data = [instruct.replace(" [caption]","") for instruct in data]
data = [instruct.replace(" [vqa]","") for instruct in data]
data = [instruct.replace(" [grounding]","") for instruct in data]
data = [instruct.replace(" [identify]","") for instruct in data]
data = [instruct.replace(" [refer]","") for instruct in data]
return data
### prepare input tokens
if 'image' in samples:
img_embeds, img_atts = self.encode_img(samples["image"])
else:
img_embeds = img_atts = None
if 'conv_q' in samples:
# handeling conversation datasets
conv_q, conv_a = samples['conv_q'], samples['conv_a']
connect_sym = samples['connect_sym'][0]
conv_q = [q.split(connect_sym)for q in conv_q]
conv_a = [a.split(connect_sym) for a in conv_a]
conv_img = assign_imgs(conv_q, img_embeds)
if self.chat_template:
conv_q = [["[INST] " + item + "[/INST]" for item in items] for items in conv_q]
regress_embeds, regress_atts, part_targets = self.get_conv_emb(conv_q, conv_a, conv_img)
cond_embeds, cond_atts = regress_embeds[:, :0], regress_atts[:, :0]
else:
if "instruction_input" in samples:
instruction = samples["instruction_input"]
elif len(self.prompt_list) > 1:
instruction = random.choice(self.prompt_list)
else:
instruction = None
if self.remove_template:
instruction = remove_special_tokens(instruction)
if self.chat_template:
instruction = ["[INST] " + instruct + "[/INST]" for instruct in instruction]
if 'length' in samples:
# the input is a image train (like videos)
bsz, pn, hs = img_embeds.shape
img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs) # (200,64,4096) -> (4,50,64,4096)
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length'])
else:
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction)
### prepare target tokens
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in samples["answer"]]
regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(self.device)
regress_token_ids = regress_tokens.input_ids
regress_atts = regress_tokens.attention_mask
part_targets = regress_token_ids.masked_fill(
regress_token_ids == self.llama_tokenizer.pad_token_id, -100
)
regress_embeds = self.embed_tokens(regress_token_ids)
return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets
def forward(self, samples, reduction="mean"):
# prepare the embedding to condition and the embedding to regress
cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \
self.preparing_embedding(samples)
# concat the embedding to condition and the embedding to regress
inputs_embeds, attention_mask, input_lens = \
self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts)
# get bos token embedding
bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
bos_atts = attention_mask[:, :1]
# add bos token at the begining
inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1)
attention_mask = torch.cat([bos_atts, attention_mask], dim=1)
targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]],
dtype=torch.long).to(self.device).fill_(-100)
for i, target in enumerate(part_targets):
targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target # plus 1 for bos
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
reduction=reduction,
use_fastv=self.use_fastv
)
loss = outputs.loss
return {"loss": loss}
@torch.no_grad()
def generate(
self,
images,
texts,
use_nucleus_sampling=False,
num_beams=1,
max_new_tokens=20,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1,
temperature=1,
do_sample=False,
stop_words_ids=[2],
lengths=None,
return_video_temporal_features=False,
img_embeds=None,
):
'''
function for generate test use
'''
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])
if img_embeds is None:
img_embeds, atts_img = self.encode_img(images.to(self.device))
else:
# Use images features from the input(4,45,64,5632)
img_embeds = img_embeds.reshape(-1, *img_embeds.shape[-2:])
img_embeds= img_embeds.to(self.device)
img_embeds = self.llama_proj(img_embeds) # project to llama input size (200,64,5632) -> (200,64,4096)
atts_img = torch.ones(img_embeds.size()[:-1], dtype=torch.long).to(self.device)
if lengths is not None:
image_lists = []
img_embeds = img_embeds.reshape(len(lengths), -1, img_embeds.shape[-2], img_embeds.shape[-1])
for idx, img_embed in enumerate(img_embeds):
image_lists.append([img_embed[i][None] for i in range(lengths[idx])])
else:
image_lists = [[image_emb[None]] for image_emb in img_embeds]
assert len(texts) == len(image_lists)
batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)]
batch_size = len(batch_embs)
max_len = max([emb.shape[1] for emb in batch_embs])
emb_dim = batch_embs[0].shape[2]
dtype = batch_embs[0].dtype
device = batch_embs[0].device
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
for i, emb in enumerate(batch_embs):
emb_len = emb.shape[1]
embs[i, -emb_len:] = emb[0]
attn_mask[i, -emb_len:] = 1
# check if the input embedding tokens are in the range of the model cotext window (4096) and if it is not, then truncate it to the max context window
if self.model_type == "Llama":
context_window = 3700
else:
context_window = 7500
if embs.shape[1] > context_window:
embs = embs[:, -context_window:]
attn_mask = attn_mask[:, -context_window:]
with self.maybe_autocast():
if return_video_temporal_features:
last_hidden_state = self.llama_model(
inputs_embeds=embs,
attention_mask=attn_mask,
output_hidden_states=True,
).hidden_states[-1]
video_temporal_features = last_hidden_state.mean(dim=1)
# normalize the temporal features using L2 norm
# video_temporal_features = video_temporal_features / video_temporal_features.norm(dim=-1, keepdim=True)
outputs = self.llama_model.generate(
inputs_embeds=embs,
attention_mask=attn_mask,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
# stopping_criteria=stopping_criteria,
use_fastv=False,
)
answers = []
for output_token in outputs:
if output_token[0] == 0:
output_token = output_token[1:]
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
output_texts = output_texts.split('</s>')[0] # remove the stop sign </s>
output_texts = output_texts.replace("<s>", "")
output_texts = output_texts.split(r'[/INST]')[-1].strip()
answers.append(output_texts)
if return_video_temporal_features:
return answers, video_temporal_features
else:
return answers
def inference_fun (self,video_path,instruction,gen_subtitles=True):
if gen_subtitles:
subtitle_path=generate_subtitles(video_path)
else :
subtitle_path=None
prepared_images,prepared_instruction=self.prepare_input(video_path,subtitle_path,instruction)
if prepared_images is None:
return "Video cann't be open ,check the video path again"
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = self.CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
answers = self.generate(prepared_images, prompt, max_new_tokens=512, do_sample=True, lengths=[length],num_beams=1)
return answers[0]
@torch.no_grad()
def generate_text_only(
self,
images,
seg_tokens,
use_nucleus_sampling=False,
num_beams=1,
max_new_tokens=20,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1,
temperature=1,
do_sample=False,
stop_words_ids=[2],
lengths=None,
return_video_temporal_features=False,
img_embeds=None,
):
'''
function for generate test use
'''
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])
batch_embs = [torch.cat([self.embed_tokens(seg_t)]) for seg_t in seg_tokens]
batch_size = len(batch_embs)
max_len = max([emb.shape[1] for emb in batch_embs])
emb_dim = batch_embs[0].shape[2]
dtype = batch_embs[0].dtype
device = batch_embs[0].device
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
for i, emb in enumerate(batch_embs):
emb_len = emb.shape[1]
embs[i, -emb_len:] = emb[0]
attn_mask[i, -emb_len:] = 1
with self.maybe_autocast():
outputs = self.llama_model.generate(
inputs_embeds=embs,
attention_mask=attn_mask,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
# stopping_criteria=stopping_criteria,
)
answers = []
for output_token in outputs:
if output_token[0] == 0:
output_token = output_token[1:]
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
output_texts = output_texts.split('</s>')[0] # remove the stop sign </s>
output_texts = output_texts.replace("<s>", "")
output_texts = output_texts.split(r'[/INST]')[-1].strip()
answers.append(output_texts)
return answers
@torch.no_grad()
def multi_select(self, images, texts, answers, num_cand=None):
all_losses = []
for answer in answers:
choice_samples = {
'image': images,
'instruction_input': texts,
'answer': answer
}
loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1)
all_losses.append(loss)
torch.cuda.empty_cache()
all_losses = torch.cat(all_losses, dim=-1)
if num_cand is not None:
for i in range(all_losses.shape[0]):
all_losses[i, num_cand[i]:] = 9999
output_class_ranks = torch.argsort(all_losses, dim=-1)
return output_class_ranks.tolist()
def predict_answers(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=128,
answer_list=None,
prompt="",
length_penalty=0,
**kwargs
):
'''
function for open-ended VQA
'''
images = samples["image"].cuda()
texts = samples["instruction_input"]
output_text = self.generate(
images=images,
texts=texts,
num_beams=num_beams,
max_new_tokens=max_len,
min_length=min_len,
length_penalty=length_penalty
)
if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]:
output_text = self._lemmatize(output_text)
return output_text
def predict_class(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=5,
answer_list=None,
prompt="",
length_penalty=0,
**kwargs
):
'''
function for multi-choice VQA
'''
image = samples["image"].cuda()
instruction = samples['instruction_input']
answers = samples["choices"]
num_cand = samples["num_choices"]
ranks = self.multi_select(image, instruction, answers, num_cand)
pred_ans = []
for i, rank in enumerate(ranks):
pred = answers[rank[0]][i]
pred_ans.append(pred)
return pred_ans
def embed_tokens(self, token_ids):
try:
embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids)
except AttributeError:
embeds = self.llama_model.model.embed_tokens(token_ids)
return embeds
@classmethod
def from_config(cls, cfg):
model = cls(
cfg=cfg,
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if ckpt_path:
print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt['model'], strict=False)
# push the model to the hub with its metadata and config file
model.to('cuda')
# model.push_to_hub("Vision-CAIR/MiniGPT4-video-mistral-hf")
video_config = minigpt4_video_config(cfg)
# video_config.save_pretrained("minigpt4_video_config")
# print("Save Minigpt-4-LLM Config: minigpt4_video_config")
# video_config.push_to_hub("Vision-CAIR/MiniGPT4-video-mistral-hf")
return model
def assign_imgs(batched_instruct_list, batched_img_embeds):
'''this function is used when the data is interleaved.
the interlevaed data is separated, and this function assign
corresponding image embeddings to each segment'''
if len(batched_img_embeds.shape) == 3:
batched_img_embeds = batched_img_embeds[:, None]
batched_assigned = []
for instruct_list, img_embeds in zip(batched_instruct_list, batched_img_embeds):
img_idx = 0
assigned_img = []
n_assigned = []
for instruct in instruct_list:
n_img = instruct.count('<ImageHere>')
if n_img > 0: # this instruction include images.
assigned_img.append(img_embeds[None, img_idx:img_idx+n_img])
img_idx += n_img
n_assigned.append(n_img)
else: # this instruction doesn't include images
assigned_img.append(None)
n_assigned.append(None)
batched_assigned.append(assigned_img)
return batched_assigned
|