File size: 20,055 Bytes
26ca17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9942389
26ca17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e636d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import io
import json
import logging
import os
import pickle
import re
import shutil
import urllib
import urllib.error
import urllib.request
from typing import Optional
from urllib.parse import urlparse

import numpy as np
import pandas as pd
import yaml
from iopath.common.download import download
from iopath.common.file_io import file_lock, g_pathmgr
from minigpt4_video.registry import registry
from torch.utils.model_zoo import tqdm
from torchvision.datasets.utils import (
    check_integrity,
    download_file_from_google_drive,
    extract_archive,
)


def now():
    from datetime import datetime

    return datetime.now().strftime("%Y%m%d%H%M")


def is_url(url_or_filename):
    parsed = urlparse(url_or_filename)
    return parsed.scheme in ("http", "https")


def get_cache_path(rel_path):
    return os.path.expanduser(os.path.join(registry.get_path("cache_root"), rel_path))


def get_abs_path(rel_path):
    return os.path.join(registry.get_path("library_root"), rel_path)


def load_json(filename):
    with open(filename, "r") as f:
        return json.load(f)


# The following are adapted from torchvision and vissl
# torchvision: https://github.com/pytorch/vision
# vissl: https://github.com/facebookresearch/vissl/blob/main/vissl/utils/download.py


def makedir(dir_path):
    """
    Create the directory if it does not exist.
    """
    is_success = False
    try:
        if not g_pathmgr.exists(dir_path):
            g_pathmgr.mkdirs(dir_path)
        is_success = True
    except BaseException:
        print(f"Error creating directory: {dir_path}")
    return is_success


def get_redirected_url(url: str):
    """
    Given a URL, returns the URL it redirects to or the
    original URL in case of no indirection
    """
    import requests

    with requests.Session() as session:
        with session.get(url, stream=True, allow_redirects=True) as response:
            if response.history:
                return response.url
            else:
                return url


def to_google_drive_download_url(view_url: str) -> str:
    """
    Utility function to transform a view URL of google drive
    to a download URL for google drive
    Example input:
        https://drive.google.com/file/d/137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp/view
    Example output:
        https://drive.google.com/uc?export=download&id=137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp
    """
    splits = view_url.split("/")
    assert splits[-1] == "view"
    file_id = splits[-2]
    return f"https://drive.google.com/uc?export=download&id={file_id}"


def download_google_drive_url(url: str, output_path: str, output_file_name: str):
    """
    Download a file from google drive
    Downloading an URL from google drive requires confirmation when
    the file of the size is too big (google drive notifies that
    anti-viral checks cannot be performed on such files)
    """
    import requests

    with requests.Session() as session:

        # First get the confirmation token and append it to the URL
        with session.get(url, stream=True, allow_redirects=True) as response:
            for k, v in response.cookies.items():
                if k.startswith("download_warning"):
                    url = url + "&confirm=" + v

        # Then download the content of the file
        with session.get(url, stream=True, verify=True) as response:
            makedir(output_path)
            path = os.path.join(output_path, output_file_name)
            total_size = int(response.headers.get("Content-length", 0))
            with open(path, "wb") as file:
                from tqdm import tqdm

                with tqdm(total=total_size) as progress_bar:
                    for block in response.iter_content(
                        chunk_size=io.DEFAULT_BUFFER_SIZE
                    ):
                        file.write(block)
                        progress_bar.update(len(block))


def _get_google_drive_file_id(url: str) -> Optional[str]:
    parts = urlparse(url)

    if re.match(r"(drive|docs)[.]google[.]com", parts.netloc) is None:
        return None

    match = re.match(r"/file/d/(?P<id>[^/]*)", parts.path)
    if match is None:
        return None

    return match.group("id")


def _urlretrieve(url: str, filename: str, chunk_size: int = 1024) -> None:
    with open(filename, "wb") as fh:
        with urllib.request.urlopen(
            urllib.request.Request(url, headers={"User-Agent": "vissl"})
        ) as response:
            with tqdm(total=response.length) as pbar:
                for chunk in iter(lambda: response.read(chunk_size), ""):
                    if not chunk:
                        break
                    pbar.update(chunk_size)
                    fh.write(chunk)


def download_url(
    url: str,
    root: str,
    filename: Optional[str] = None,
    md5: Optional[str] = None,
) -> None:
    """Download a file from a url and place it in root.
    Args:
        url (str): URL to download file from
        root (str): Directory to place downloaded file in
        filename (str, optional): Name to save the file under.
                                  If None, use the basename of the URL.
        md5 (str, optional): MD5 checksum of the download. If None, do not check
    """
    root = os.path.expanduser(root)
    if not filename:
        filename = os.path.basename(url)
    fpath = os.path.join(root, filename)

    makedir(root)

    # check if file is already present locally
    if check_integrity(fpath, md5):
        print("Using downloaded and verified file: " + fpath)
        return

    # expand redirect chain if needed
    url = get_redirected_url(url)

    # check if file is located on Google Drive
    file_id = _get_google_drive_file_id(url)
    if file_id is not None:
        return download_file_from_google_drive(file_id, root, filename, md5)

    # download the file
    try:
        print("Downloading " + url + " to " + fpath)
        _urlretrieve(url, fpath)
    except (urllib.error.URLError, IOError) as e:  # type: ignore[attr-defined]
        if url[:5] == "https":
            url = url.replace("https:", "http:")
            print(
                "Failed download. Trying https -> http instead."
                " Downloading " + url + " to " + fpath
            )
            _urlretrieve(url, fpath)
        else:
            raise e

    # check integrity of downloaded file
    if not check_integrity(fpath, md5):
        raise RuntimeError("File not found or corrupted.")


def download_and_extract_archive(
    url: str,
    download_root: str,
    extract_root: Optional[str] = None,
    filename: Optional[str] = None,
    md5: Optional[str] = None,
    remove_finished: bool = False,
) -> None:
    download_root = os.path.expanduser(download_root)
    if extract_root is None:
        extract_root = download_root
    if not filename:
        filename = os.path.basename(url)

    download_url(url, download_root, filename, md5)

    archive = os.path.join(download_root, filename)
    print("Extracting {} to {}".format(archive, extract_root))
    extract_archive(archive, extract_root, remove_finished)


def cache_url(url: str, cache_dir: str) -> str:
    """
    This implementation downloads the remote resource and caches it locally.
    The resource will only be downloaded if not previously requested.
    """
    parsed_url = urlparse(url)
    dirname = os.path.join(cache_dir, os.path.dirname(parsed_url.path.lstrip("/")))
    makedir(dirname)
    filename = url.split("/")[-1]
    cached = os.path.join(dirname, filename)
    with file_lock(cached):
        if not os.path.isfile(cached):
            logging.info(f"Downloading {url} to {cached} ...")
            cached = download(url, dirname, filename=filename)
    logging.info(f"URL {url} cached in {cached}")
    return cached


# TODO (prigoyal): convert this into RAII-style API
def create_file_symlink(file1, file2):
    """
    Simply create the symlinks for a given file1 to file2.
    Useful during model checkpointing to symlinks to the
    latest successful checkpoint.
    """
    try:
        if g_pathmgr.exists(file2):
            g_pathmgr.rm(file2)
        g_pathmgr.symlink(file1, file2)
    except Exception as e:
        logging.info(f"Could NOT create symlink. Error: {e}")


def save_file(data, filename, append_to_json=True, verbose=True):
    """
    Common i/o utility to handle saving data to various file formats.
    Supported:
        .pkl, .pickle, .npy, .json
    Specifically for .json, users have the option to either append (default)
    or rewrite by passing in Boolean value to append_to_json.
    """
    if verbose:
        logging.info(f"Saving data to file: {filename}")
    file_ext = os.path.splitext(filename)[1]
    if file_ext in [".pkl", ".pickle"]:
        with g_pathmgr.open(filename, "wb") as fopen:
            pickle.dump(data, fopen, pickle.HIGHEST_PROTOCOL)
    elif file_ext == ".npy":
        with g_pathmgr.open(filename, "wb") as fopen:
            np.save(fopen, data)
    elif file_ext == ".json":
        if append_to_json:
            with g_pathmgr.open(filename, "a") as fopen:
                fopen.write(json.dumps(data, sort_keys=True) + "\n")
                fopen.flush()
        else:
            with g_pathmgr.open(filename, "w") as fopen:
                fopen.write(json.dumps(data, sort_keys=True) + "\n")
                fopen.flush()
    elif file_ext == ".yaml":
        with g_pathmgr.open(filename, "w") as fopen:
            dump = yaml.dump(data)
            fopen.write(dump)
            fopen.flush()
    else:
        raise Exception(f"Saving {file_ext} is not supported yet")

    if verbose:
        logging.info(f"Saved data to file: {filename}")


def load_file(filename, mmap_mode=None, verbose=True, allow_pickle=False):
    """
    Common i/o utility to handle loading data from various file formats.
    Supported:
        .pkl, .pickle, .npy, .json
    For the npy files, we support reading the files in mmap_mode.
    If the mmap_mode of reading is not successful, we load data without the
    mmap_mode.
    """
    if verbose:
        logging.info(f"Loading data from file: {filename}")

    file_ext = os.path.splitext(filename)[1]
    if file_ext == ".txt":
        with g_pathmgr.open(filename, "r") as fopen:
            data = fopen.readlines()
    elif file_ext in [".pkl", ".pickle"]:
        with g_pathmgr.open(filename, "rb") as fopen:
            data = pickle.load(fopen, encoding="latin1")
    elif file_ext == ".npy":
        if mmap_mode:
            try:
                with g_pathmgr.open(filename, "rb") as fopen:
                    data = np.load(
                        fopen,
                        allow_pickle=allow_pickle,
                        encoding="latin1",
                        mmap_mode=mmap_mode,
                    )
            except ValueError as e:
                logging.info(
                    f"Could not mmap {filename}: {e}. Trying without g_pathmgr"
                )
                data = np.load(
                    filename,
                    allow_pickle=allow_pickle,
                    encoding="latin1",
                    mmap_mode=mmap_mode,
                )
                logging.info("Successfully loaded without g_pathmgr")
            except Exception:
                logging.info("Could not mmap without g_pathmgr. Trying without mmap")
                with g_pathmgr.open(filename, "rb") as fopen:
                    data = np.load(fopen, allow_pickle=allow_pickle, encoding="latin1")
        else:
            with g_pathmgr.open(filename, "rb") as fopen:
                data = np.load(fopen, allow_pickle=allow_pickle, encoding="latin1")
    elif file_ext == ".json":
        with g_pathmgr.open(filename, "r") as fopen:
            data = json.load(fopen)
    elif file_ext == ".yaml":
        with g_pathmgr.open(filename, "r") as fopen:
            data = yaml.load(fopen, Loader=yaml.FullLoader)
    elif file_ext == ".csv":
        with g_pathmgr.open(filename, "r") as fopen:
            data = pd.read_csv(fopen)
    else:
        raise Exception(f"Reading from {file_ext} is not supported yet")
    return data


def abspath(resource_path: str):
    """
    Make a path absolute, but take into account prefixes like
    "http://" or "manifold://"
    """
    regex = re.compile(r"^\w+://")
    if regex.match(resource_path) is None:
        return os.path.abspath(resource_path)
    else:
        return resource_path


def makedir(dir_path):
    """
    Create the directory if it does not exist.
    """
    is_success = False
    try:
        if not g_pathmgr.exists(dir_path):
            g_pathmgr.mkdirs(dir_path)
        is_success = True
    except BaseException:
        logging.info(f"Error creating directory: {dir_path}")
    return is_success


def is_url(input_url):
    """
    Check if an input string is a url. look for http(s):// and ignoring the case
    """
    is_url = re.match(r"^(?:http)s?://", input_url, re.IGNORECASE) is not None
    return is_url


def cleanup_dir(dir):
    """
    Utility for deleting a directory. Useful for cleaning the storage space
    that contains various training artifacts like checkpoints, data etc.
    """
    if os.path.exists(dir):
        logging.info(f"Deleting directory: {dir}")
        shutil.rmtree(dir)
    logging.info(f"Deleted contents of directory: {dir}")


def get_file_size(filename):
    """
    Given a file, get the size of file in MB
    """
    size_in_mb = os.path.getsize(filename) / float(1024**2)
    return size_in_mb

from typing import Dict, List, Protocol, Tuple

import torch
from torch.func import functional_call

from vllm.multimodal import BatchedTensors
from vllm.utils import is_pin_memory_available


def merge_vision_embeddings(input_ids: torch.Tensor,
                            inputs_embeds: torch.Tensor,
                            vision_embeddings: BatchedTensors,
                            image_token_id: int) -> torch.Tensor:
    """
    Merge `vision_embeddings` into `inputs_embeds` by overwriting the positions
    in `inputs_embeds` corresponding to placeholder image tokens in `input_ids`.

    Note:
        This updates `inputs_embeds` in place.
    """
    mask = (input_ids == image_token_id)
    num_expected_tokens = mask.sum()

    if isinstance(vision_embeddings, torch.Tensor):
        batch_size, batch_tokens, *_, embed_dim = vision_embeddings.shape
        total_tokens = batch_size * batch_tokens
        if num_expected_tokens != total_tokens:
            expr = f"{batch_size} x {batch_tokens}"
            raise ValueError(
                f"Attempted to assign {expr} = {total_tokens} "
                f"image tokens to {num_expected_tokens} placeholders")

        inputs_embeds[mask] = vision_embeddings.view(total_tokens, embed_dim)
    else:
        size_per_batch = [t.shape[0] for t in vision_embeddings]
        total_tokens = sum(size_per_batch)
        if num_expected_tokens != total_tokens:
            expr = ' + '.join(map(str, size_per_batch))
            raise ValueError(
                f"Attempted to assign {expr} = {total_tokens} "
                f"image tokens to {num_expected_tokens} placeholders")

        inputs_embeds[mask] = torch.cat(vision_embeddings)

    return inputs_embeds


class LayerFn(Protocol):

    def __call__(
        self,
        prefix="",
    ) -> torch.nn.Module:
        ...


class PPMissingLayer(torch.nn.Identity):
    """
    A placeholder layer for missing layers in a pipeline parallel model.
    """

    def __init__(self, *args, **kwargs):
        super().__init__()


_CPU_OFFLOAD_BYTES = 0
_CPU_OFFLOAD_MAX_BYTES = 0


def set_cpu_offload_max_bytes(max_bytes: int) -> None:
    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    _CPU_OFFLOAD_BYTES = 0
    _CPU_OFFLOAD_MAX_BYTES = max_bytes


def maybe_offload_to_cpu(module: torch.nn.Module) -> torch.nn.Module:
    device = next(module.parameters()).device

    if device == torch.device("cpu"):
        return module

    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
        return module

    pin_memory = is_pin_memory_available()

    # offload parameters to CPU
    # use pin_memory if possible, which helps cudagraph capture speed
    for p in module.parameters():
        if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
            # we use per-parameter offloading
            # one module might have some parameters offloaded and some not
            break

        # `torch.empty_like` does not support `pin_memory` argument
        cpu_data = torch.empty(size=p.data.size(),
                               dtype=p.data.dtype,
                               layout=p.data.layout,
                               device='cpu',
                               pin_memory=pin_memory)
        cpu_data.copy_(p.data)
        p.data = cpu_data
        _CPU_OFFLOAD_BYTES += p.data.numel() * p.data.element_size()

    state_dict: Dict[str, torch.Tensor] = module.state_dict()

    original_forward = module.forward

    def forward(*args, **kwargs):
        module.forward = original_forward
        device_state = {
            # here we blindly call `to(device)`
            # if the parameter is already on the device, it will be a no-op
            k: v.to(device, non_blocking=True)
            for k, v in state_dict.items()
        }
        output = functional_call(module,
                                 device_state,
                                 args=args,
                                 kwargs=kwargs)
        module.forward = forward
        return output

    module.forward = forward

    return module


def make_layers(
    num_hidden_layers: int,
    layer_fn: LayerFn,
    prefix: str,
) -> Tuple[int, int, torch.nn.ModuleList]:
    """Make a list of layers with the given layer function, taking
    pipeline parallelism into account.
    """
    from vllm.distributed.parallel_state import get_pp_group
    from vllm.distributed.utils import get_pp_indices
    start_layer, end_layer = get_pp_indices(num_hidden_layers,
                                            get_pp_group().rank_in_group,
                                            get_pp_group().world_size)
    modules = torch.nn.ModuleList(
        [PPMissingLayer() for _ in range(start_layer)] + [
            maybe_offload_to_cpu(layer_fn(prefix=f"{prefix}.{idx}"))
            for idx in range(start_layer, end_layer)
        ] + [PPMissingLayer() for _ in range(end_layer, num_hidden_layers)])
    return start_layer, end_layer, modules


# NOTE: don't use lru_cache here because it can prevent garbage collection
_model_to_pp_missing_layer_names: Dict[int, List[str]] = {}


def get_pp_missing_layer_names(model: torch.nn.Module) -> List[str]:
    """Get the names of the missing layers in a pipeline parallel model."""
    model_id = id(model)
    if model_id in _model_to_pp_missing_layer_names:
        return _model_to_pp_missing_layer_names[model_id]

    missing_layer_names = []
    for name, module in model.named_modules():
        if isinstance(module, PPMissingLayer):
            # NOTE: the trailing dot is used to match the prefix of the layer.
            # without the dot, we could match a layer that is not missing,
            # e.g., 'encoder.layer.1' would match 'encoder.layer.11'
            missing_layer_names.append(name + '.')
    _model_to_pp_missing_layer_names[model_id] = missing_layer_names

    return missing_layer_names


def is_pp_missing_parameter(name: str, model: torch.nn.Module) -> bool:
    """Check if a parameter is missing in a pipeline parallel model."""
    for missing_layer_name in get_pp_missing_layer_names(model):
        if name.startswith(missing_layer_name):
            return True
    return False