|
""" |
|
Copyright (c) 2023, salesforce.com, inc. |
|
All rights reserved. |
|
SPDX-License-Identifier: BSD-3-Clause |
|
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
""" |
|
import contextlib |
|
import logging |
|
import os |
|
import time |
|
import datetime |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.distributed as dist |
|
import torch.nn.functional as F |
|
|
|
from .dist_utils import download_cached_file,get_world_size,get_rank,is_dist_avail_and_initialized |
|
from .utils import is_url |
|
from .logger import MetricLogger |
|
from .base_model import BaseModel |
|
from .Qformer import BertConfig, BertLMHeadModel |
|
from .eva_vit import create_eva_vit_g |
|
from transformers import BertTokenizer |
|
|
|
|
|
class Blip2Base(BaseModel): |
|
@classmethod |
|
def init_tokenizer(cls): |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
tokenizer.add_special_tokens({"bos_token": "[DEC]"}) |
|
return tokenizer |
|
|
|
def maybe_autocast(self, dtype=torch.float16): |
|
|
|
|
|
enable_autocast = self.device != torch.device("cpu") |
|
|
|
if enable_autocast: |
|
return torch.cuda.amp.autocast(dtype=dtype) |
|
else: |
|
return contextlib.nullcontext() |
|
|
|
@classmethod |
|
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): |
|
encoder_config = BertConfig.from_pretrained("bert-base-uncased") |
|
encoder_config.encoder_width = vision_width |
|
|
|
encoder_config.add_cross_attention = True |
|
encoder_config.cross_attention_freq = cross_attention_freq |
|
encoder_config.query_length = num_query_token |
|
Qformer = BertLMHeadModel(config=encoder_config) |
|
query_tokens = nn.Parameter( |
|
torch.zeros(1, num_query_token, encoder_config.hidden_size) |
|
) |
|
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) |
|
return Qformer, query_tokens |
|
|
|
@classmethod |
|
def init_vision_encoder( |
|
cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision |
|
): |
|
assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4" |
|
visual_encoder = create_eva_vit_g( |
|
img_size, drop_path_rate, use_grad_checkpoint, precision |
|
) |
|
|
|
ln_vision = LayerNorm(visual_encoder.num_features) |
|
return visual_encoder, ln_vision |
|
|
|
def load_from_pretrained(self, url_or_filename): |
|
if is_url(url_or_filename): |
|
cached_file = download_cached_file( |
|
url_or_filename, check_hash=False, progress=True |
|
) |
|
checkpoint = torch.load(cached_file, map_location="cpu") |
|
elif os.path.isfile(url_or_filename): |
|
checkpoint = torch.load(url_or_filename, map_location="cpu") |
|
else: |
|
raise RuntimeError("checkpoint url or path is invalid") |
|
|
|
state_dict = checkpoint["model"] |
|
|
|
msg = self.load_state_dict(state_dict, strict=False) |
|
|
|
|
|
logging.info("load checkpoint from %s" % url_or_filename) |
|
|
|
return msg |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
ret = super().forward(x.type(torch.float32)) |
|
return ret.type(orig_type) |
|
|
|
|
|
def compute_sim_matrix(model, data_loader, **kwargs): |
|
k_test = kwargs.pop("k_test") |
|
|
|
metric_logger = MetricLogger(delimiter=" ") |
|
header = "Evaluation:" |
|
|
|
logging.info("Computing features for evaluation...") |
|
start_time = time.time() |
|
|
|
texts = data_loader.dataset.text |
|
num_text = len(texts) |
|
text_bs = 256 |
|
text_ids = [] |
|
text_embeds = [] |
|
text_atts = [] |
|
for i in range(0, num_text, text_bs): |
|
text = texts[i : min(num_text, i + text_bs)] |
|
text_input = model.tokenizer( |
|
text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=35, |
|
return_tensors="pt", |
|
).to(model.device) |
|
text_feat = model.forward_text(text_input) |
|
text_embed = F.normalize(model.text_proj(text_feat)) |
|
text_embeds.append(text_embed) |
|
text_ids.append(text_input.input_ids) |
|
text_atts.append(text_input.attention_mask) |
|
|
|
text_embeds = torch.cat(text_embeds, dim=0) |
|
text_ids = torch.cat(text_ids, dim=0) |
|
text_atts = torch.cat(text_atts, dim=0) |
|
|
|
vit_feats = [] |
|
image_embeds = [] |
|
for samples in data_loader: |
|
image = samples["image"] |
|
|
|
image = image.to(model.device) |
|
image_feat, vit_feat = model.forward_image(image) |
|
image_embed = model.vision_proj(image_feat) |
|
image_embed = F.normalize(image_embed, dim=-1) |
|
|
|
vit_feats.append(vit_feat.cpu()) |
|
image_embeds.append(image_embed) |
|
|
|
vit_feats = torch.cat(vit_feats, dim=0) |
|
image_embeds = torch.cat(image_embeds, dim=0) |
|
|
|
sims_matrix = [] |
|
for image_embed in image_embeds: |
|
sim_q2t = image_embed @ text_embeds.t() |
|
sim_i2t, _ = sim_q2t.max(0) |
|
sims_matrix.append(sim_i2t) |
|
sims_matrix = torch.stack(sims_matrix, dim=0) |
|
|
|
score_matrix_i2t = torch.full( |
|
(len(data_loader.dataset.image), len(texts)), -100.0 |
|
).to(model.device) |
|
|
|
num_tasks = get_world_size() |
|
rank = get_rank() |
|
step = sims_matrix.size(0) // num_tasks + 1 |
|
start = rank * step |
|
end = min(sims_matrix.size(0), start + step) |
|
|
|
for i, sims in enumerate( |
|
metric_logger.log_every(sims_matrix[start:end], 50, header) |
|
): |
|
topk_sim, topk_idx = sims.topk(k=k_test, dim=0) |
|
image_inputs = vit_feats[start + i].repeat(k_test, 1, 1).to(model.device) |
|
score = model.compute_itm( |
|
image_inputs=image_inputs, |
|
text_ids=text_ids[topk_idx], |
|
text_atts=text_atts[topk_idx], |
|
).float() |
|
score_matrix_i2t[start + i, topk_idx] = score + topk_sim |
|
|
|
sims_matrix = sims_matrix.t() |
|
score_matrix_t2i = torch.full( |
|
(len(texts), len(data_loader.dataset.image)), -100.0 |
|
).to(model.device) |
|
|
|
step = sims_matrix.size(0) // num_tasks + 1 |
|
start = rank * step |
|
end = min(sims_matrix.size(0), start + step) |
|
|
|
for i, sims in enumerate( |
|
metric_logger.log_every(sims_matrix[start:end], 50, header) |
|
): |
|
topk_sim, topk_idx = sims.topk(k=k_test, dim=0) |
|
image_inputs = vit_feats[topk_idx.cpu()].to(model.device) |
|
score = model.compute_itm( |
|
image_inputs=image_inputs, |
|
text_ids=text_ids[start + i].repeat(k_test, 1), |
|
text_atts=text_atts[start + i].repeat(k_test, 1), |
|
).float() |
|
score_matrix_t2i[start + i, topk_idx] = score + topk_sim |
|
|
|
if is_dist_avail_and_initialized(): |
|
dist.barrier() |
|
torch.distributed.all_reduce( |
|
score_matrix_i2t, op=torch.distributed.ReduceOp.SUM |
|
) |
|
torch.distributed.all_reduce( |
|
score_matrix_t2i, op=torch.distributed.ReduceOp.SUM |
|
) |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
logging.info("Evaluation time {}".format(total_time_str)) |
|
|
|
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy() |
|
|