|
import logging |
|
import random |
|
|
|
import torch |
|
from torch.cuda.amp import autocast as autocast |
|
import torch.nn as nn |
|
|
|
from minigpt4.common.registry import registry |
|
from minigpt4.models.blip2 import Blip2Base, disabled_train |
|
from minigpt4.models.modeling_llama_v2 import LlamaForCausalLM |
|
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, StoppingCriteriaList, StoppingCriteriaSub |
|
|
|
from transformers import LlamaTokenizer, CodeLlamaTokenizer, BitsAndBytesConfig |
|
|
|
from peft import ( |
|
LoraConfig, |
|
get_peft_model, |
|
prepare_model_for_kbit_training |
|
) |
|
import time |
|
import numpy as np |
|
|
|
from minigpt4.models import policies |
|
|
|
|
|
@registry.register_model("mini_gpt4v") |
|
class MiniGPT4v(Blip2Base): |
|
""" |
|
BLIP2 GPT-LLAMA model. |
|
""" |
|
|
|
PRETRAINED_MODEL_CONFIG_DICT = { |
|
"pretrain_vicuna": "configs/models/minigpt4.yaml", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vit_model="eva_clip_g", |
|
img_size=224, |
|
drop_path_rate=0, |
|
use_grad_checkpoint=False, |
|
vit_precision="fp16", |
|
freeze_vit=True, |
|
llama_model="", |
|
prompt_path="", |
|
prompt_template="", |
|
max_txt_len=32, |
|
low_resource=False, |
|
end_sym='\n', |
|
lora_r = 8, |
|
lora_target_modules = ["q_proj","v_proj"], |
|
lora_alpha=16, |
|
|
|
|
|
lora_dropout= 0.05, |
|
ckpt_path = "", |
|
system_prompt= False, |
|
chat_template=False, |
|
token_pooling=True, |
|
use_grad_checkpoint_llm=False, |
|
max_context_len=3800, |
|
remove_template = False, |
|
|
|
): |
|
super().__init__() |
|
|
|
self.tokenizer = self.init_tokenizer() |
|
self.low_resource = low_resource |
|
self.token_pooling = token_pooling |
|
self.remove_template = remove_template |
|
|
|
print("token pooling", self.token_pooling) |
|
|
|
|
|
self.use_grad_checkpoint_llm = use_grad_checkpoint_llm |
|
self.max_context_len = max_context_len |
|
self.chat_template = chat_template |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("vit precision", vit_precision) |
|
self.visual_encoder, self.ln_vision = self.init_vision_encoder( |
|
vit_model, 224, drop_path_rate, use_grad_checkpoint, vit_precision |
|
) |
|
for name, param in self.visual_encoder.named_parameters(): |
|
param.requires_grad = False |
|
self.visual_encoder = self.visual_encoder.eval() |
|
self.visual_encoder.train = disabled_train |
|
for name, param in self.ln_vision.named_parameters(): |
|
param.requires_grad = False |
|
self.ln_vision = self.ln_vision.eval() |
|
self.ln_vision.train = disabled_train |
|
logging.info("freeze vision encoder") |
|
print("freeze the vision encoder") |
|
|
|
|
|
print('Loading VIT Done') |
|
|
|
|
|
|
|
|
|
print('Loading LLAMA') |
|
|
|
|
|
self.B_SYS, self.E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" |
|
|
|
if 'CodeLlama' in llama_model: |
|
self.llama_tokenizer = CodeLlamaTokenizer.from_pretrained(llama_model, use_fast=False) |
|
self.llama_tokenizer.pad_token = "$$" |
|
else: |
|
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False) |
|
self.llama_tokenizer.pad_token = "$$" |
|
|
|
self.system_prompt = system_prompt |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
|
|
|
|
self.llama_model = LlamaForCausalLM.from_pretrained( |
|
llama_model, |
|
quantization_config=bnb_config, |
|
device_map={"": 0} |
|
) |
|
|
|
|
|
self.llama_model = prepare_model_for_kbit_training(self.llama_model) |
|
|
|
|
|
|
|
|
|
print('Loading LLAMA Done') |
|
|
|
self.merge_n = 3 |
|
|
|
self.llama_proj = nn.Linear( |
|
1408 * self.merge_n**2, self.llama_model.config.hidden_size |
|
) |
|
|
|
self.max_txt_len = max_txt_len |
|
self.end_sym = end_sym |
|
|
|
if prompt_path: |
|
with open(prompt_path, 'r') as f: |
|
raw_prompts = f.read().splitlines() |
|
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<ImageHere>" in raw_prompt] |
|
self.prompt_list = [prompt_template.format(p) for p in filted_prompts] |
|
print('Load {} training prompts'.format(len(self.prompt_list))) |
|
print('Prompt Example \n{}'.format(random.choice(self.prompt_list))) |
|
else: |
|
self.prompt_list = [] |
|
|
|
def encode_img(self, image): |
|
device = image.device |
|
if len(image.shape) > 4: |
|
image = image.reshape(-1, *image.shape[-3:]) |
|
|
|
bs, ch, w, h = image.shape |
|
assert w % 224 == 0 |
|
bw = w // 224 |
|
assert h % 224 == 0 |
|
bh = h // 224 |
|
image_patches = image.view(bs, ch, bw, 224, bh, 224).permute(0, 2, 4, 1, 3, 5) |
|
image_patches = image_patches.reshape(bs * bw * bh, ch, 224, 224) |
|
|
|
with self.maybe_autocast(): |
|
image_patch_embeds = self.ln_vision(self.visual_encoder(image_patches)).to(device) |
|
|
|
image_patch_embeds = image_patch_embeds[:,1:,:].reshape(bs, bw, bh, 16, 16, image_patch_embeds.shape[-1]) |
|
image_patch_embeds = image_patch_embeds.permute(0, 1, 3, 2, 4, 5) |
|
image_embeds = image_patch_embeds.reshape(bs, bw * 16 * bh * 16, image_patch_embeds.shape[-1]) |
|
|
|
bs, pn, hs = image_embeds.shape |
|
|
|
image_embeds = image_embeds.view(bs, int(pn/self.merge_n**2), int(hs*self.merge_n**2)) |
|
|
|
inputs_llama = self.llama_proj(image_embeds) |
|
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device) |
|
return inputs_llama, atts_llama |
|
|
|
def get_context_emb(self, prompt, img_list): |
|
img_device = img_list[0].device |
|
prompt_segs = prompt.split('<ImageHere>') |
|
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images." |
|
seg_tokens = [ |
|
self.llama_tokenizer( |
|
seg, return_tensors="pt", add_special_tokens=i==0).to(img_device).input_ids |
|
for i, seg in enumerate(prompt_segs) |
|
] |
|
|
|
seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens] |
|
|
|
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] |
|
|
|
mixed_embs = torch.cat(mixed_embs, dim=1) |
|
return mixed_embs |
|
|
|
def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None): |
|
if prompts is None or len(prompts) == 0: |
|
|
|
return img_embeds, atts_img |
|
elif img_embeds is None: |
|
|
|
self.llama_tokenizer.padding_side = "right" |
|
prompt_tokens = self.llama_tokenizer( |
|
prompts, |
|
return_tensors="pt", |
|
padding="longest", |
|
add_special_tokens=False |
|
).to(self.device) |
|
prompt_embeds = self.embed_tokens(prompt_tokens.input_ids) |
|
atts_prompt = prompt_tokens.attention_mask |
|
return prompt_embeds, atts_prompt |
|
|
|
else: |
|
|
|
emb_lists = [] |
|
|
|
for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)): |
|
pn = each_img_embed.shape[-2] |
|
if lengths is not None: |
|
each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1]) |
|
each_img_embed = each_img_embed[:lengths[idx] * pn] |
|
|
|
p_segs = each_prompt.split('<ImageHere>') |
|
interleave_emb = [] |
|
for idx, seg in enumerate(p_segs[:-1]): |
|
p_tokens = self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) |
|
p_embed = self.embed_tokens(p_tokens.input_ids) |
|
interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx*pn:(idx+1)*pn]], dim=1)) |
|
|
|
wrapped_emb = torch.cat(interleave_emb, dim=1) |
|
p_tokens = self.llama_tokenizer(p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device) |
|
p_embed = self.embed_tokens(p_tokens.input_ids) |
|
wrapped_emb = torch.cat([wrapped_emb,p_embed], dim=1) |
|
emb_lists.append(wrapped_emb) |
|
|
|
emb_lens = [emb.shape[1] for emb in emb_lists] |
|
pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device)) |
|
|
|
max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len |
|
wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone() |
|
wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device) |
|
|
|
for i, emb in enumerate(emb_lists): |
|
length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len |
|
wrapped_embs[i, :length] = emb[:, :length] |
|
wrapped_atts[i, :length] = 1 |
|
|
|
return wrapped_embs, wrapped_atts |
|
|
|
def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts): |
|
""" |
|
Concatenate the batched input embedding and batched output embedding together. |
|
Both the input and the output embedding should be right padded. |
|
""" |
|
|
|
input_lens = [] |
|
cat_embs = [] |
|
cat_atts = [] |
|
|
|
for i in range(input_embs.size(0)): |
|
input_len = input_atts[i].sum() |
|
input_lens.append(input_len) |
|
|
|
cat_embs.append( |
|
torch.cat([ |
|
input_embs[i][:input_len], |
|
output_embs[i], |
|
input_embs[i][input_len:] |
|
]) |
|
) |
|
cat_atts.append( |
|
torch.cat([ |
|
input_atts[i][:input_len], |
|
output_atts[i], |
|
input_atts[i][input_len:] |
|
]) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cat_embs = torch.stack(cat_embs) |
|
cat_atts = torch.stack(cat_atts) |
|
return cat_embs, cat_atts, input_lens |
|
|
|
def get_conv_emb(self, conv_q, conv_a, conv_img): |
|
"""concatenate conversation and make sure the model is only trained to regress the answer""" |
|
|
|
regress_embs_list = [] |
|
targets_list = [] |
|
|
|
batch_size = len(conv_q) |
|
for batch_idx in range(batch_size): |
|
questions, answers = conv_q[batch_idx], conv_a[batch_idx] |
|
assigned_imgs = conv_img[batch_idx] |
|
questions = [self.prompt_wrap( |
|
img_embeds=img, |
|
atts_img=None, |
|
prompts=[q], |
|
lengths=[img.shape[1]] if img is not None else None) for q, img in zip(questions, assigned_imgs)] |
|
q_embs = [emb for emb, _ in questions] |
|
|
|
answers = [self.llama_tokenizer(a, return_tensors="pt", add_special_tokens=False).to(self.device) for a in answers] |
|
cur_emb = [] |
|
cur_target = [] |
|
for i in range(len(questions)): |
|
cur_emb.append(q_embs[i]) |
|
cur_target.append(torch.ones_like(q_embs[i][..., 0], dtype=torch.int) * -100) |
|
|
|
cur_emb.append(self.embed_tokens(answers[i].input_ids)) |
|
cur_target.append(answers[i].input_ids) |
|
|
|
cur_emb = torch.cat(cur_emb, dim=1) |
|
cur_target = torch.cat(cur_target, dim=1) |
|
|
|
regress_embs_list.append(cur_emb) |
|
targets_list.append(cur_target) |
|
|
|
max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len) |
|
|
|
regress_embeds = torch.zeros([batch_size, max_len, cur_emb.shape[-1]], device=self.device) |
|
regress_attn = torch.zeros([batch_size, max_len], dtype=torch.int, device=self.device) |
|
targets = torch.ones([batch_size, max_len], dtype=torch.long, device=self.device) * -100 |
|
|
|
for batch_idx in range(batch_size): |
|
cur_len = regress_embs_list[batch_idx].shape[1] |
|
regress_embeds[batch_idx, :cur_len] = regress_embs_list[batch_idx][0, :max_len] |
|
regress_attn[batch_idx, :cur_len] = 1 |
|
targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len] |
|
|
|
return regress_embeds, regress_attn, targets |
|
|
|
def preparing_embedding(self, samples): |
|
def remove_special_tokens(data): |
|
|
|
|
|
data = [instruct.replace(" [caption]","") for instruct in data] |
|
data = [instruct.replace(" [vqa]","") for instruct in data] |
|
data = [instruct.replace(" [grounding]","") for instruct in data] |
|
data = [instruct.replace(" [identify]","") for instruct in data] |
|
data = [instruct.replace(" [refer]","") for instruct in data] |
|
return data |
|
|
|
|
|
if 'image' in samples: |
|
img_embeds, img_atts = self.encode_img(samples["image"]) |
|
else: |
|
img_embeds = img_atts = None |
|
|
|
if 'conv_q' in samples: |
|
|
|
conv_q, conv_a = samples['conv_q'], samples['conv_a'] |
|
|
|
connect_sym = samples['connect_sym'][0] |
|
conv_q = [q.split(connect_sym)for q in conv_q] |
|
conv_a = [a.split(connect_sym) for a in conv_a] |
|
conv_img = assign_imgs(conv_q, img_embeds) |
|
|
|
if self.chat_template: |
|
conv_q = [["[INST] " + item + "[/INST]" for item in items] for items in conv_q] |
|
|
|
regress_embeds, regress_atts, part_targets = self.get_conv_emb(conv_q, conv_a, conv_img) |
|
cond_embeds, cond_atts = regress_embeds[:, :0], regress_atts[:, :0] |
|
|
|
else: |
|
instruction = samples["instruction_input"] if "instruction_input" in samples else None |
|
|
|
|
|
if self.remove_template: |
|
instruction = remove_special_tokens(instruction) |
|
|
|
|
|
if self.chat_template: |
|
instruction = ["[INST] " + instruct + "[/INST]" for instruct in instruction] |
|
|
|
if 'length' in samples: |
|
|
|
bsz, pn, hs = img_embeds.shape |
|
img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs) |
|
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length']) |
|
else: |
|
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction) |
|
|
|
|
|
self.llama_tokenizer.padding_side = "right" |
|
text = [t + self.end_sym for t in samples["answer"]] |
|
|
|
regress_tokens = self.llama_tokenizer( |
|
text, |
|
return_tensors="pt", |
|
padding="longest", |
|
truncation=True, |
|
max_length=self.max_txt_len, |
|
add_special_tokens=False |
|
).to(self.device) |
|
|
|
regress_token_ids = regress_tokens.input_ids |
|
regress_atts = regress_tokens.attention_mask |
|
part_targets = regress_token_ids.masked_fill( |
|
regress_token_ids == self.llama_tokenizer.pad_token_id, -100 |
|
) |
|
|
|
regress_embeds = self.embed_tokens(regress_token_ids) |
|
|
|
return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets |
|
|
|
def forward(self, samples, reduction="mean"): |
|
|
|
cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \ |
|
self.preparing_embedding(samples) |
|
|
|
|
|
inputs_embeds, attention_mask, input_lens = \ |
|
self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts) |
|
|
|
|
|
bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id |
|
bos_embeds = self.embed_tokens(bos) |
|
bos_atts = attention_mask[:, :1] |
|
|
|
|
|
inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1) |
|
attention_mask = torch.cat([bos_atts, attention_mask], dim=1) |
|
|
|
|
|
targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]], |
|
dtype=torch.long).to(self.device).fill_(-100) |
|
for i, target in enumerate(part_targets): |
|
targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target |
|
|
|
with self.maybe_autocast(): |
|
outputs = self.llama_model( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
return_dict=True, |
|
labels=targets, |
|
reduction=reduction |
|
) |
|
loss = outputs.loss |
|
|
|
return {"loss": loss} |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
images, |
|
texts, |
|
use_nucleus_sampling=False, |
|
num_beams=1, |
|
max_new_tokens=20, |
|
min_length=1, |
|
top_p=0.9, |
|
repetition_penalty=1, |
|
length_penalty=1, |
|
temperature=1, |
|
do_sample=False, |
|
stop_words_ids=[2], |
|
lengths=None, |
|
): |
|
''' |
|
function for generate test use |
|
''' |
|
|
|
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub( |
|
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])]) |
|
|
|
img_embeds, atts_img = self.encode_img(images.to(self.device)) |
|
if lengths is not None: |
|
image_lists = [] |
|
img_embeds = img_embeds.reshape(len(lengths), -1, img_embeds.shape[-2], img_embeds.shape[-1]) |
|
for idx, img_embed in enumerate(img_embeds): |
|
image_lists.append([img_embed[i][None] for i in range(lengths[idx])]) |
|
else: |
|
image_lists = [[image_emb[None]] for image_emb in img_embeds] |
|
assert len(texts) == len(image_lists) |
|
batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)] |
|
|
|
batch_size = len(batch_embs) |
|
max_len = max([emb.shape[1] for emb in batch_embs]) |
|
emb_dim = batch_embs[0].shape[2] |
|
dtype = batch_embs[0].dtype |
|
device = batch_embs[0].device |
|
|
|
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device) |
|
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device) |
|
for i, emb in enumerate(batch_embs): |
|
emb_len = emb.shape[1] |
|
embs[i, -emb_len:] = emb[0] |
|
attn_mask[i, -emb_len:] = 1 |
|
|
|
with self.maybe_autocast(): |
|
outputs = self.llama_model.generate( |
|
inputs_embeds=embs, |
|
attention_mask=attn_mask, |
|
max_new_tokens=max_new_tokens, |
|
num_beams=num_beams, |
|
do_sample=do_sample, |
|
|
|
) |
|
|
|
answers = [] |
|
for output_token in outputs: |
|
if output_token[0] == 0: |
|
output_token = output_token[1:] |
|
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True) |
|
output_texts = output_texts.split('</s>')[0] |
|
output_texts = output_texts.replace("<s>", "") |
|
output_texts = output_texts.split(r'[/INST]')[-1].strip() |
|
answers.append(output_texts) |
|
|
|
return answers |
|
|
|
@torch.no_grad() |
|
def multi_select(self, images, texts, answers, num_cand=None): |
|
all_losses = [] |
|
for answer in answers: |
|
choice_samples = { |
|
'image': images, |
|
'instruction_input': texts, |
|
'answer': answer |
|
} |
|
loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1) |
|
all_losses.append(loss) |
|
torch.cuda.empty_cache() |
|
all_losses = torch.cat(all_losses, dim=-1) |
|
if num_cand is not None: |
|
for i in range(all_losses.shape[0]): |
|
all_losses[i, num_cand[i]:] = 9999 |
|
output_class_ranks = torch.argsort(all_losses, dim=-1) |
|
return output_class_ranks.tolist() |
|
|
|
def predict_answers( |
|
self, |
|
samples, |
|
num_beams=5, |
|
inference_method="generate", |
|
max_len=10, |
|
min_len=1, |
|
num_ans_candidates=128, |
|
answer_list=None, |
|
prompt="", |
|
length_penalty=0, |
|
**kwargs |
|
): |
|
''' |
|
function for open-ended VQA |
|
''' |
|
images = samples["image"].cuda() |
|
texts = samples["instruction_input"] |
|
|
|
output_text = self.generate( |
|
images=images, |
|
texts=texts, |
|
num_beams=num_beams, |
|
max_new_tokens=max_len, |
|
min_length=min_len, |
|
length_penalty=length_penalty |
|
) |
|
|
|
if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]: |
|
output_text = self._lemmatize(output_text) |
|
|
|
return output_text |
|
|
|
def predict_class( |
|
self, |
|
samples, |
|
num_beams=5, |
|
inference_method="generate", |
|
max_len=10, |
|
min_len=1, |
|
num_ans_candidates=5, |
|
answer_list=None, |
|
prompt="", |
|
length_penalty=0, |
|
**kwargs |
|
): |
|
''' |
|
function for multi-choice VQA |
|
''' |
|
|
|
image = samples["image"].cuda() |
|
instruction = samples['instruction_input'] |
|
answers = samples["choices"] |
|
num_cand = samples["num_choices"] |
|
|
|
ranks = self.multi_select(image, instruction, answers, num_cand) |
|
|
|
pred_ans = [] |
|
for i, rank in enumerate(ranks): |
|
pred = answers[rank[0]][i] |
|
pred_ans.append(pred) |
|
return pred_ans |
|
|
|
def embed_tokens(self, token_ids): |
|
try: |
|
embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids) |
|
except AttributeError: |
|
embeds = self.llama_model.model.embed_tokens(token_ids) |
|
|
|
return embeds |
|
|
|
@classmethod |
|
def from_config(cls, cfg): |
|
vit_model = cfg.get("vit_model", "eva_clip_g") |
|
q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth") |
|
img_size = cfg.get("image_size") |
|
num_query_token = cfg.get("num_query_token") |
|
llama_model = cfg.get("llama_model") |
|
|
|
drop_path_rate = cfg.get("drop_path_rate", 0) |
|
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) |
|
vit_precision = cfg.get("vit_precision", "fp16") |
|
freeze_vit = cfg.get("freeze_vit", True) |
|
freeze_qformer = cfg.get("freeze_qformer", True) |
|
low_resource = cfg.get("low_resource", False) |
|
|
|
prompt_path = cfg.get("prompt_path", "") |
|
prompt_template = cfg.get("prompt_template", "") |
|
max_txt_len = cfg.get("max_txt_len", 300) |
|
end_sym = cfg.get("end_sym", '\n') |
|
|
|
lora_r = cfg.get("lora_r",64) |
|
lora_alpha = cfg.get("lora_alpha",16) |
|
chat_template = cfg.get("chat_template",False) |
|
system_prompt = cfg.get("system_prompt", False) |
|
token_pooling = cfg.get("token_pooling",True) |
|
|
|
use_grad_checkpoint_llm = cfg.get("use_grad_checkpoint_llm", False) |
|
max_context_len = cfg.get("max_context_len", 3800) |
|
remove_template = cfg.get("remove_template", False) |
|
|
|
|
|
model = cls( |
|
vit_model=vit_model, |
|
img_size=img_size, |
|
drop_path_rate=drop_path_rate, |
|
use_grad_checkpoint=use_grad_checkpoint, |
|
vit_precision=vit_precision, |
|
freeze_vit=freeze_vit, |
|
llama_model=llama_model, |
|
prompt_path=prompt_path, |
|
prompt_template=prompt_template, |
|
max_txt_len=max_txt_len, |
|
low_resource=low_resource, |
|
end_sym=end_sym, |
|
lora_r = lora_r, |
|
lora_alpha = lora_alpha, |
|
chat_template = chat_template, |
|
system_prompt = system_prompt, |
|
token_pooling = token_pooling, |
|
use_grad_checkpoint_llm=use_grad_checkpoint_llm, |
|
max_context_len=max_context_len, |
|
remove_template = remove_template |
|
) |
|
|
|
ckpt_path = cfg.get("ckpt", "") |
|
if ckpt_path: |
|
print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path)) |
|
ckpt = torch.load(ckpt_path, map_location="cpu") |
|
msg = model.load_state_dict(ckpt['model'], strict=False) |
|
|
|
return model |
|
|
|
|
|
def assign_imgs(batched_instruct_list, batched_img_embeds): |
|
'''this function is used when the data is interleaved. |
|
the interlevaed data is separated, and this function assign |
|
corresponding image embeddings to each segment''' |
|
if len(batched_img_embeds.shape) == 3: |
|
batched_img_embeds = batched_img_embeds[:, None] |
|
|
|
batched_assigned = [] |
|
|
|
for instruct_list, img_embeds in zip(batched_instruct_list, batched_img_embeds): |
|
img_idx = 0 |
|
assigned_img = [] |
|
n_assigned = [] |
|
for instruct in instruct_list: |
|
n_img = instruct.count('<ImageHere>') |
|
if n_img > 0: |
|
assigned_img.append(img_embeds[None, img_idx:img_idx+n_img]) |
|
img_idx += n_img |
|
n_assigned.append(n_img) |
|
else: |
|
assigned_img.append(None) |
|
n_assigned.append(None) |
|
batched_assigned.append(assigned_img) |
|
|
|
return batched_assigned |