Update README.md
Browse files
README.md
CHANGED
@@ -17,6 +17,7 @@ widget:
|
|
17 |
- "Samica o długości ciała 10–11 mm, szczoteczki na tylnych nogach służące do zbierania pyłku oraz włoski na końcu odwłoka jaskrawo pomarańczowoczerwone. "
|
18 |
example_title: "Uczenie maszynowe"
|
19 |
---
|
|
|
20 |
|
21 |
# SHerbert large - Polish SentenceBERT
|
22 |
SentenceBERT is a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. Training was based on the original paper [Siamese BERT models for the task of semantic textual similarity (STS)](https://arxiv.org/abs/1908.10084) with a slight modification of how the training data was used. The goal of the model is to generate different embeddings based on the semantic and topic similarity of the given text.
|
|
|
17 |
- "Samica o długości ciała 10–11 mm, szczoteczki na tylnych nogach służące do zbierania pyłku oraz włoski na końcu odwłoka jaskrawo pomarańczowoczerwone. "
|
18 |
example_title: "Uczenie maszynowe"
|
19 |
---
|
20 |
+
<img src="https://public.3.basecamp.com/p/rs5XqmAuF1iEuW6U7nMHcZeY/upload/download/VL-NLP-short.png" alt="logo voicelab nlp" style="width:300px;"/>
|
21 |
|
22 |
# SHerbert large - Polish SentenceBERT
|
23 |
SentenceBERT is a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. Training was based on the original paper [Siamese BERT models for the task of semantic textual similarity (STS)](https://arxiv.org/abs/1908.10084) with a slight modification of how the training data was used. The goal of the model is to generate different embeddings based on the semantic and topic similarity of the given text.
|