File size: 11,405 Bytes
38beee7 fbdd406 38beee7 d387681 447e869 772dd5b 38beee7 fbdd406 38beee7 fbdd406 447e869 fbdd406 38beee7 6766351 38beee7 6766351 81049e6 6766351 38beee7 d387681 772dd5b 4bad107 d387681 38beee7 d387681 38beee7 0a96cd7 38beee7 d0f8cce b9ca129 38beee7 467bcaa 38beee7 467bcaa 38beee7 c2ef1eb 38beee7 95e2874 38beee7 95e2874 38beee7 9d04f1d 4bad107 38beee7 fbdd406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
license: cc-by-4.0
language:
- pl
- en
datasets:
- posmac
pipeline_tag: text2text-generation
pipeline_kwargs:
- no_repeat_ngram_size=3
- num_beams=4
tags:
- keywords-generation
- text-classifiation
- other
- medical
widget:
- text: >-
Keywords: Our vlT5 model is a keyword generation model based on
encoder-decoder architecture using Transformer blocks presented by google
(https://huggingface.co/t5-base). The vlT5 was trained on scientific
articles corpus to predict a given set of keyphrases based on the
concatenation of the article’s abstract and title. It generates precise, yet
not always complete keyphrases that describe the content of the article
based only on the abstract.
example_title: English 1
- text: >-
Keywords: Decays the learning rate of each parameter group by gamma every
step_size epochs. Notice that such decay can happen simultaneously with
other changes to the learning rate from outside this scheduler. When
last_epoch=-1, sets initial lr as lr.
example_title: English 2
- text: >-
Keywords: Przełomem w dziedzinie sztucznej inteligencji i maszynowego
uczenia się było powstanie systemu eksperckiego Dendral na Uniwersytecie
Stanforda w 1965. System ten powstał w celu zautomatyzowania analizy i
identyfikacji molekuł związków organicznych, które dotychczas nie były znane
chemikom. Wyniki badań otrzymane dzięki systemowi Dendral były pierwszym w
historii odkryciem dokonanym przez komputer, które zostały opublikowane w
prasie specjalistycznej.
example_title: Polish
- text: >-
Keywords: El análisis de un economista calcula que, a pesar del aumento del
gasto general, la Navidad es una pérdida de peso muerto según la teoría
microeconómica ortodoxa, debido al efecto de dar regalos. Esta pérdida se
calcula como la diferencia entre lo que el donante gastó en el artículo y lo
que el receptor del regalo habría pagado por el artículo. Se estima que en
2001, Navidad resultó en una pérdida de peso muerto de $ 4 mil millones solo
en los EE. UU.1 Debido a factores de complicación, este análisis se utiliza
a veces para discutir posibles fallas en la teoría microeconómica actual.
Otras pérdidas de peso muerto incluyen los efectos de la Navidad en el medio
ambiente y el hecho de que los regalos materiales a menudo se perciben como
elefantes blancos, lo que impone costos de mantenimiento y almacenamiento y
contribuye al desorden.
example_title: Spanish
metrics:
- f1
- precision
- recall
library_name: adapter-transformers
---
<img src="https://public.3.basecamp.com/p/rs5XqmAuF1iEuW6U7nMHcZeY/upload/download/VL-NLP-short.png" alt="logo voicelab nlp" style="width:300px;"/>
# Keyword Extraction from Short Texts with T5
> Our vlT5 model is a keyword generation model based on encoder-decoder architecture using Transformer blocks presented by Google ([https://huggingface.co/t5-base](https://huggingface.co/t5-base)). The vlT5 was trained on scientific articles corpus to predict a given set of keyphrases based on the concatenation of the article’s abstract and title. It generates precise, yet not always complete keyphrases that describe the content of the article based only on the abstract.
**Keywords generated with vlT5-base-keywords:** encoder-decoder architecture, keyword generation
Results on demo model (different generation method, one model per language):
> Our vlT5 model is a keyword generation model based on encoder-decoder architecture using Transformer blocks presented by Google ([https://huggingface.co/t5-base](https://huggingface.co/t5-base)). The vlT5 was trained on scientific articles corpus to predict a given set of keyphrases based on the concatenation of the article’s abstract and title. It generates precise, yet not always complete keyphrases that describe the content of the article based only on the abstract.
**Keywords generated with vlT5-base-keywords:** encoder-decoder architecture, vlT5, keyword generation, scientific articles corpus
## vlT5
The biggest advantage is the transferability of the vlT5 model, as it works well on all domains and types of text. The downside is that the text length and the number of keywords are similar to the training data: the text piece of an abstract length generates approximately 3 to 5 keywords. It works both extractive and abstractively. Longer pieces of text must be split into smaller chunks, and then propagated to the model.
### Overview
- **Language model:** [t5-base](https://huggingface.co/t5-base)
- **Language:** pl, en (but works relatively well with others)
- **Training data:** POSMAC
- **Online Demo:** Visit our online demo for better results [https://nlp-demo-1.voicelab.ai/](https://nlp-demo-1.voicelab.ai/)
- **Paper:** [Keyword Extraction from Short Texts with a Text-To-Text Transfer Transformer, ACIIDS 2022](https://arxiv.org/abs/2209.14008)
# Corpus
The model was trained on a POSMAC corpus. Polish Open Science Metadata Corpus (POSMAC) is a collection of 216,214 abstracts of scientific publications compiled in the CURLICAT project.
| Domains | Documents | With keywords |
| -------------------------------------------------------- | --------: | :-----------: |
| Engineering and technical sciences | 58 974 | 57 165 |
| Social sciences | 58 166 | 41 799 |
| Agricultural sciences | 29 811 | 15 492 |
| Humanities | 22 755 | 11 497 |
| Exact and natural sciences | 13 579 | 9 185 |
| Humanities, Social sciences | 12 809 | 7 063 |
| Medical and health sciences | 6 030 | 3 913 |
| Medical and health sciences, Social sciences | 828 | 571 |
| Humanities, Medical and health sciences, Social sciences | 601 | 455 |
| Engineering and technical sciences, Humanities | 312 | 312 |
# Tokenizer
As in the original plT5 implementation, the training dataset was tokenized into subwords using a sentencepiece unigram model with vocabulary size of 50k tokens.
# Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords")
task_prefix = "Keywords: "
inputs = [
"Christina Katrakis, who spoke to the BBC from Vorokhta in western Ukraine, relays the account of one family, who say Russian soldiers shot at their vehicles while they were leaving their village near Chernobyl in northern Ukraine. She says the cars had white flags and signs saying they were carrying children.",
"Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr.",
"Hello, I'd like to order a pizza with salami topping.",
]
for sample in inputs:
input_sequences = [task_prefix + sample]
input_ids = tokenizer(
input_sequences, return_tensors="pt", truncation=True
).input_ids
output = model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
predicted = tokenizer.decode(output[0], skip_special_tokens=True)
print(sample, "\n --->", predicted)
```
# Inference
Our results showed that the best generation results were achieved with `no_repeat_ngram_size=3, num_beams=4`
# Results
| Method | Rank | Micro | | | Macro | | |
| ----------- | ---: | :--------: | ---------: | ---------: | :---: | ----: | ----: |
| | | P | R | F1 | P | R | F1 |
| extremeText | 1 | 0.175 | 0.038 | 0.063 | 0.007 | 0.004 | 0.005 |
| | 3 | 0.117 | 0.077 | 0.093 | 0.011 | 0.011 | 0.011 |
| | 5 | 0.090 | 0.099 | 0.094 | 0.013 | 0.016 | 0.015 |
| | 10 | 0.060 | 0.131 | 0.082 | 0.015 | 0.025 | 0.019 |
| vlT5kw | 1 | **0.345** | 0.076 | 0.124 | 0.054 | 0.047 | 0.050 |
| | 3 | 0.328 | 0.212 | 0.257 | 0.133 | 0.127 | 0.129 |
| | 5 | 0.318 | **0.237** | **0.271** | 0.143 | 0.140 | 0.141 |
| KeyBERT | 1 | 0.030 | 0.007 | 0.011 | 0.004 | 0.003 | 0.003 |
| | 3 | 0.015 | 0.010 | 0.012 | 0.006 | 0.004 | 0.005 |
| | 5 | 0.011 | 0.012 | 0.011 | 0.006 | 0.005 | 0.005 |
| TermoPL | 1 | 0.118 | 0.026 | 0.043 | 0.004 | 0.003 | 0.003 |
| | 3 | 0.070 | 0.046 | 0.056 | 0.006 | 0.005 | 0.006 |
| | 5 | 0.051 | 0.056 | 0.053 | 0.007 | 0.007 | 0.007 |
| | all | 0.025 | 0.339 | 0.047 | 0.017 | 0.030 | 0.022 |
| extremeText | 1 | 0.210 | 0.077 | 0.112 | 0.037 | 0.017 | 0.023 |
| | 3 | 0.139 | 0.152 | 0.145 | 0.045 | 0.042 | 0.043 |
| | 5 | 0.107 | 0.196 | 0.139 | 0.049 | 0.063 | 0.055 |
| | 10 | 0.072 | 0.262 | 0.112 | 0.041 | 0.098 | 0.058 |
| vlT5kw | 1 | **0.377** | 0.138 | 0.202 | 0.119 | 0.071 | 0.089 |
| | 3 | 0.361 | 0.301 | 0.328 | 0.185 | 0.147 | 0.164 |
| | 5 | 0.357 | **0.316** | **0.335** | 0.188 | 0.153 | 0.169 |
| KeyBERT | 1 | 0.018 | 0.007 | 0.010 | 0.003 | 0.001 | 0.001 |
| | 3 | 0.009 | 0.010 | 0.009 | 0.004 | 0.001 | 0.002 |
| | 5 | 0.007 | 0.012 | 0.009 | 0.004 | 0.001 | 0.002 |
| TermoPL | 1 | 0.076 | 0.028 | 0.041 | 0.002 | 0.001 | 0.001 |
| | 3 | 0.046 | 0.051 | 0.048 | 0.003 | 0.001 | 0.002 |
| | 5 | 0.033 | 0.061 | 0.043 | 0.003 | 0.001 | 0.002 |
| | all | 0.021 | 0.457 | 0.040 | 0.004 | 0.008 | 0.005 |
# License
CC BY 4.0
# Citation
If you use this model, please cite the following paper:
[Pęzik, P., Mikołajczyk, A., Wawrzyński, A., Żarnecki, F., Nitoń, B., Ogrodniczuk, M. (2023). Transferable Keyword Extraction and Generation with Text-to-Text Language Models. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_42](https://link.springer.com/chapter/10.1007/978-3-031-36021-3_42)
OR
[Piotr Pęzik, Agnieszka Mikołajczyk-Bareła, Adam Wawrzyński, Bartłomiej Nitoń, Maciej Ogrodniczuk, Keyword Extraction from Short Texts with a Text-To-Text Transfer Transformer, ACIIDS 2022](https://arxiv.org/abs/2209.14008)
# Authors
The model was trained by NLP Research Team at Voicelab.ai.
You can contact us [here](https://voicelab.ai/contact/). |