from transformers import AutoModel, PreTrainedModel, BertConfig import torch class MultiLabelAttention(torch.nn.Module): def __init__(self, D_in, num_labels): super().__init__() self.A = torch.nn.Parameter(torch.empty(D_in, num_labels)) torch.nn.init.uniform_(self.A, -0.1, 0.1) def forward(self, x): attention_weights = torch.nn.functional.softmax( torch.tanh(torch.matmul(x, self.A)), dim=1 ) return torch.matmul(torch.transpose(attention_weights, 2, 1), x) class BertMesh(PreTrainedModel): config_class = BertConfig def __init__( self, config, ): super().__init__(config=config) self.config.auto_map = {"AutoModel": "model.BertMesh"} self.pretrained_model = self.config.pretrained_model self.num_labels = self.config.num_labels self.hidden_size = getattr(self.config, "hidden_size", 512) self.dropout = getattr(self.config, "dropout", 0.1) self.multilabel_attention = getattr(self.config, "multilabel_attention", False) self.bert = AutoModel.from_pretrained(self.pretrained_model) # 768 self.multilabel_attention_layer = MultiLabelAttention( 768, self.num_labels ) # num_labels, 768 self.linear_1 = torch.nn.Linear(768, self.hidden_size) # num_labels, 512 self.linear_2 = torch.nn.Linear(self.hidden_size, 1) # num_labels, 1 self.linear_out = torch.nn.Linear(self.hidden_size, self.num_labels) self.dropout_layer = torch.nn.Dropout(self.dropout) def forward(self, input_ids, **kwargs): if type(input_ids) is list: # coming from tokenizer input_ids = torch.tensor(input_ids) if self.multilabel_attention: hidden_states = self.bert(input_ids=input_ids)[0] attention_outs = self.multilabel_attention_layer(hidden_states) outs = torch.nn.functional.relu(self.linear_1(attention_outs)) outs = self.dropout_layer(outs) outs = torch.sigmoid(self.linear_2(outs)) outs = torch.flatten(outs, start_dim=1) else: cls = self.bert(input_ids=input_ids)[1] outs = torch.nn.functional.relu(self.linear_1(cls)) outs = self.dropout_layer(outs) outs = torch.sigmoid(self.linear_out(outs)) return outs