ksingla025 commited on
Commit
21826c0
1 Parent(s): 7359006

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -9
README.md CHANGED
@@ -21,20 +21,25 @@ model-index:
21
  results: []
22
 
23
  ---
 
24
 
 
25
 
26
- ## ASR+NL Model Overview
27
 
28
- Recoganize begin and end of English Named Entities, get speaker emotion and also transcribe
 
 
 
 
29
 
30
- ## NVIDIA NeMo: Training
31
 
32
- To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
33
- ```
34
- pip install nemo_toolkit['all']
35
- ```
36
 
37
- ## How to Use this Model
 
 
38
 
39
  ### How to run
40
 
@@ -42,7 +47,7 @@ pip install nemo_toolkit['all']
42
  import nemo.collections.asr as nemo_asr
43
 
44
  # Step 1: Load the ASR model from Hugging Face
45
- model_name = 'WhissleAI/speech-tagger_en_ner-emotion'
46
  asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name)
47
 
48
  # Step 2: Provide the path to your audio file
 
21
  results: []
22
 
23
  ---
24
+ # This speech tagger performs transcription, annotates entities, predict speaker emotion
25
 
26
+ Model is suitable for voiceAI applications, real-time and offline.
27
 
28
+ ## Model Details
29
 
30
+ - **Model type**: NeMo ASR
31
+ - **Architecture**: Conformer CTC
32
+ - **Language**: English
33
+ - **Training data**: CommonVoice, Gigaspeech
34
+ - **Performance metrics**: [Metrics]
35
 
36
+ ## Usage
37
 
38
+ To use this model, you need to install the NeMo library:
 
 
 
39
 
40
+ ```bash
41
+ pip install nemo_toolkit
42
+ ```
43
 
44
  ### How to run
45
 
 
47
  import nemo.collections.asr as nemo_asr
48
 
49
  # Step 1: Load the ASR model from Hugging Face
50
+ model_name = 'WhissleAI/speech-tagger_en_ner_emotion'
51
  asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name)
52
 
53
  # Step 2: Provide the path to your audio file