roberta-base-qnli / README.md
WillHeld's picture
update model card README.md
df02657
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: roberta-base-qnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QNLI
          type: glue
          args: qnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9154310818231741

roberta-base-qnli

This model is a fine-tuned version of roberta-base on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2330
  • Accuracy: 0.9154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6919 0.08 500 0.6161 0.7501
0.4801 0.15 1000 0.3524 0.8550
0.4049 0.23 1500 0.3011 0.8742
0.3827 0.31 2000 0.3125 0.8768
0.3445 0.38 2500 0.2916 0.8924
0.3567 0.46 3000 0.2662 0.8991
0.3422 0.53 3500 0.2657 0.8980
0.3257 0.61 4000 0.2830 0.9021
0.3506 0.69 4500 0.2434 0.9063
0.317 0.76 5000 0.2440 0.9052
0.3152 0.84 5500 0.2786 0.9015
0.2966 0.92 6000 0.2599 0.9083
0.298 0.99 6500 0.2617 0.9070
0.2634 1.07 7000 0.2330 0.9154
0.2625 1.15 7500 0.2598 0.9109
0.2596 1.22 8000 0.3616 0.9099
0.2457 1.3 8500 0.2800 0.9096
0.2545 1.37 9000 0.2960 0.9081
0.2535 1.45 9500 0.2389 0.9114
0.2639 1.53 10000 0.3343 0.8913
0.2434 1.6 10500 0.2470 0.9116
0.2613 1.68 11000 0.2949 0.9092
0.2456 1.76 11500 0.2557 0.9163
0.2483 1.83 12000 0.2462 0.9141
0.2524 1.91 12500 0.2453 0.9114
0.2467 1.99 13000 0.2611 0.9162
0.2059 2.06 13500 0.3071 0.9158
0.1968 2.14 14000 0.3205 0.9209
0.1944 2.21 14500 0.3430 0.9145
0.2065 2.29 15000 0.3388 0.9147
0.1992 2.37 15500 0.2569 0.9158
0.1994 2.44 16000 0.3349 0.9109
0.2001 2.52 16500 0.2850 0.9096
0.2014 2.6 17000 0.3214 0.9200
0.2156 2.67 17500 0.3079 0.9134
0.2036 2.75 18000 0.2739 0.9163
0.2118 2.83 18500 0.2790 0.9185
0.2167 2.9 19000 0.2699 0.9167
0.2015 2.98 19500 0.2895 0.9189
0.1649 3.05 20000 0.3719 0.9162
0.1505 3.13 20500 0.3700 0.9132
0.1509 3.21 21000 0.3721 0.9156
0.1517 3.28 21500 0.3566 0.9154
0.1583 3.36 22000 0.3975 0.9140
0.1568 3.44 22500 0.4135 0.9136
0.1642 3.51 23000 0.3705 0.9129
0.1781 3.59 23500 0.3399 0.9156
0.1725 3.67 24000 0.3165 0.9160
0.1675 3.74 24500 0.3279 0.9180
0.165 3.82 25000 0.3424 0.9202
0.1608 3.89 25500 0.4022 0.9138
0.1576 3.97 26000 0.3611 0.9147
0.1382 4.05 26500 0.4001 0.9140
0.1126 4.12 27000 0.4015 0.9169
0.1048 4.2 27500 0.3919 0.9169
0.1057 4.28 28000 0.4072 0.9176
0.1212 4.35 28500 0.3623 0.9162
0.1152 4.43 29000 0.3946 0.9149
0.125 4.51 29500 0.4142 0.9156
0.1195 4.58 30000 0.4095 0.9151
0.1139 4.66 30500 0.4586 0.9088
0.1279 4.73 31000 0.3900 0.9204
0.1306 4.81 31500 0.3741 0.9165
0.1091 4.89 32000 0.4296 0.9207
0.1272 4.96 32500 0.3724 0.9189
0.0906 5.04 33000 0.4512 0.9182
0.0915 5.12 33500 0.4160 0.9220
0.0773 5.19 34000 0.4743 0.9180
0.0861 5.27 34500 0.5024 0.9204
0.0729 5.35 35000 0.4282 0.9204
0.0901 5.42 35500 0.4612 0.9226
0.0856 5.5 36000 0.4495 0.9180
0.0839 5.58 36500 0.4501 0.9206
0.0874 5.65 37000 0.4136 0.9200
0.0944 5.73 37500 0.4629 0.9165
0.0874 5.8 38000 0.4790 0.9160
0.0859 5.88 38500 0.4725 0.9132
0.0808 5.96 39000 0.4613 0.9162
0.0723 6.03 39500 0.4816 0.9195
0.0568 6.11 40000 0.5257 0.9187
0.0628 6.19 40500 0.4516 0.9195
0.053 6.26 41000 0.4929 0.9187
0.0574 6.34 41500 0.4888 0.9191
0.0717 6.42 42000 0.4769 0.9165
0.0622 6.49 42500 0.5082 0.9184
0.0593 6.57 43000 0.4460 0.9211
0.0603 6.64 43500 0.4345 0.9206
0.0659 6.72 44000 0.4423 0.9189
0.0629 6.8 44500 0.4771 0.9191
0.058 6.87 45000 0.4589 0.9228
0.0545 6.95 45500 0.5084 0.9200
0.0465 7.03 46000 0.5422 0.9193
0.0424 7.1 46500 0.5030 0.9202
0.0317 7.18 47000 0.5393 0.9213
0.029 7.26 47500 0.5618 0.9174
0.0439 7.33 48000 0.5000 0.9195
0.0347 7.41 48500 0.5093 0.9200
0.0425 7.48 49000 0.5311 0.9174
0.0384 7.56 49500 0.5010 0.9198
0.039 7.64 50000 0.5182 0.9209
0.04 7.71 50500 0.5238 0.9215
0.0374 7.79 51000 0.5561 0.9218
0.0366 7.87 51500 0.5412 0.9200
0.036 7.94 52000 0.5213 0.9213
0.0348 8.02 52500 0.5140 0.9217
0.0186 8.1 53000 0.5693 0.9240
0.0275 8.17 53500 0.5007 0.9239
0.0219 8.25 54000 0.5400 0.9240
0.0238 8.32 54500 0.5537 0.9228
0.0201 8.4 55000 0.5851 0.9215
0.0253 8.48 55500 0.5654 0.9217
0.0243 8.55 56000 0.5833 0.9213
0.0298 8.63 56500 0.5483 0.9209
0.0232 8.71 57000 0.5724 0.9215
0.0239 8.78 57500 0.5574 0.9195
0.0263 8.86 58000 0.5491 0.9235
0.0333 8.94 58500 0.5322 0.9209
0.0259 9.01 59000 0.5493 0.9217
0.0197 9.09 59500 0.5671 0.9209
0.0237 9.16 60000 0.5536 0.9209
0.022 9.24 60500 0.5523 0.9217
0.0246 9.32 61000 0.5619 0.9220
0.0202 9.39 61500 0.5619 0.9228
0.0184 9.47 62000 0.5729 0.9217
0.0122 9.55 62500 0.5946 0.9202
0.015 9.62 63000 0.6014 0.9215
0.0189 9.7 63500 0.5928 0.9226
0.0194 9.78 64000 0.5898 0.9220
0.0219 9.85 64500 0.5851 0.9218
0.017 9.93 65000 0.5891 0.9218

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.7.1
  • Datasets 1.18.3
  • Tokenizers 0.11.6