Wonder-Griffin commited on
Commit
d68a5c3
1 Parent(s): 23877d3

Create DLME.py

Browse files
Files changed (1) hide show
  1. DLME.py +164 -0
DLME.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch import nn, optim
5
+ from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingLR
6
+ from transformers import Trainer, TrainingArguments, PreTrainedModel, PretrainedConfig
7
+ from datasets import load_dataset, load_metric
8
+ from transformers import BertTokenizerFast
9
+ from torchvision.transforms import Compose, Resize, ToTensor
10
+ import os
11
+ import matplotlib.pyplot as plt
12
+ import seaborn as sns
13
+ import logging
14
+
15
+ # Set up logging
16
+ logging.basicConfig(level=logging.INFO)
17
+ logger = logging.getLogger(__name__)
18
+
19
+ # Custom ZeusModel
20
+ class ZeusModel(PreTrainedModel):
21
+ config_class = PretrainedConfig
22
+
23
+ def __init__(self, config):
24
+ super().__init__(config)
25
+ self.hybrid_embedding = HybridEmbeddingLayer(config.vocab_size, config.embed_dim, config.image_dim, config.audio_dim)
26
+ self.quantum_attention = QuantumAttentionLayer(config.embed_dim)
27
+ self.dnp_layer = DNP(config.embed_dim, config.embed_dim)
28
+ self.recursive_reflection = RecursiveSelfReflectionLayer(config.embed_dim, config.reflection_dim)
29
+ self.mohe_layer = MoHELayer(config.embed_dim, config.num_experts)
30
+ self.output_layer = nn.Linear(config.embed_dim, config.vocab_size)
31
+ self._init_weights()
32
+
33
+ def forward(self, text_input, image_input=None, audio_input=None):
34
+ x = self.hybrid_embedding(text_input, image_input, audio_input)
35
+ attention_output = self.quantum_attention(x)
36
+ x = self.dnp_layer(attention_output)
37
+ x = self.recursive_reflection(x)
38
+ x = self.mohe_layer(x)
39
+ output = self.output_layer(x)
40
+ return output, attention_output
41
+
42
+ def _init_weights(self, module=None):
43
+ if module is None:
44
+ module = self
45
+ if isinstance(module, nn.Linear) or isinstance(module, nn.Embedding):
46
+ nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
47
+ if isinstance(module, nn.Linear) and module.bias is not None:
48
+ nn.init.zeros_(module.bias)
49
+ if isinstance(module, nn.LayerNorm):
50
+ nn.init.ones_(module.weight)
51
+ nn.init.zeros_(module.bias)
52
+ for submodule in module.children():
53
+ self._init_weights(submodule)
54
+
55
+ # Configuration class for ZeusModel
56
+ class ZeusConfig(PretrainedConfig):
57
+ def __init__(self, vocab_size=50000, embed_dim=768, image_dim=256, audio_dim=128, reflection_dim=512, num_experts=4, initializer_range=0.02, **kwargs):
58
+ super().__init__(**kwargs)
59
+ self.vocab_size = vocab_size
60
+ self.embed_dim = embed_dim
61
+ self.image_dim = image_dim
62
+ self.audio_dim = audio_dim
63
+ self.reflection_dim = reflection_dim
64
+ self.num_experts = num_experts
65
+ self.initializer_range = initializer_range
66
+
67
+ # Hybrid Embedding Layer
68
+ class HybridEmbeddingLayer(nn.Module):
69
+ def __init__(self, vocab_size, embed_dim, image_dim, audio_dim):
70
+ super(HybridEmbeddingLayer, self).__init__()
71
+ self.text_embedding = nn.Embedding(vocab_size, embed_dim)
72
+ self.image_feature_extractor = nn.Conv2d(3, image_dim, kernel_size=3, stride=2)
73
+ self.audio_feature_extractor = nn.Conv1d(1, audio_dim, kernel_size=3, stride=2)
74
+
75
+ def forward(self, text_input, image_input=None, audio_input=None):
76
+ text_emb = self.text_embedding(text_input)
77
+ if image_input is not None:
78
+ image_emb = self.image_feature_extractor(image_input)
79
+ image_emb = image_emb.view(image_emb.size(0), -1) # Flatten
80
+ if audio_input is not None:
81
+ audio_emb = self.audio_feature_extractor(audio_input)
82
+ audio_emb = audio_emb.view(audio_emb.size(0), -1) # Flatten
83
+ combined_emb = text_emb + image_emb + audio_emb # Hybrid combination
84
+ return combined_emb
85
+
86
+ # Quantum-Inspired Attention Layer
87
+ class QuantumAttentionLayer(nn.Module):
88
+ def __init__(self, embed_dim):
89
+ super(QuantumAttentionLayer, self).__init__()
90
+ self.attention_weights = nn.Parameter(torch.randn(embed_dim, embed_dim))
91
+
92
+ def forward(self, x):
93
+ # Quantum-inspired probabilistic attention
94
+ attention_probs = F.softmax(torch.matmul(x, self.attention_weights), dim=-1)
95
+ attention_output = torch.matmul(attention_probs, x)
96
+ return attention_output
97
+
98
+ # Differentiable Neural Plasticity Layer
99
+ class DNP(nn.Module):
100
+ def __init__(self, input_dim, output_dim):
101
+ super(DNP, self).__init__()
102
+ self.fc = nn.Linear(input_dim, output_dim)
103
+ self.plasticity_weights = nn.Parameter(torch.randn(output_dim))
104
+
105
+ def forward(self, x):
106
+ out = self.fc(x)
107
+ plasticity_effect = torch.mul(out, self.plasticity_weights)
108
+ return out + plasticity_effect
109
+
110
+ # Custom Recursive Self-Reflection Layer
111
+ class RecursiveSelfReflectionLayer(nn.Module):
112
+ def __init__(self, input_dim, reflection_dim):
113
+ super(RecursiveSelfReflectionLayer, self).__init__()
114
+ self.reflection_layer = nn.Linear(input_dim, reflection_dim)
115
+
116
+ def forward(self, x):
117
+ reflection_output = F.relu(self.reflection_layer(x))
118
+ self_adjusted_output = x + reflection_output # Recursive adjustment
119
+ return self_adjusted_output
120
+
121
+ # MoHE Layer
122
+ class MoHELayer(nn.Module):
123
+ def __init__(self, embed_dim, num_experts):
124
+ super(MoHELayer, self).__init__()
125
+ self.experts = nn.ModuleList([nn.Linear(embed_dim, embed_dim) for _ in range(num_experts)])
126
+ self.gate = nn.Linear(embed_dim, num_experts)
127
+
128
+ def forward(self, x):
129
+ gate_output = F.softmax(self.gate(x), dim=-1)
130
+ expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
131
+ output = torch.einsum("be,bec->bc", gate_output, expert_outputs)
132
+ return output
133
+
134
+ # Complete Unique Model
135
+ class ZeusModel(nn.Module):
136
+ def __init__(self, vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts):
137
+ super(ZeusModel, self).__init__()
138
+ self.hybrid_embedding = HybridEmbeddingLayer(vocab_size, embed_dim, image_dim, audio_dim)
139
+ self.quantum_attention = QuantumAttentionLayer(embed_dim)
140
+ self.dnp_layer = DNP(embed_dim, embed_dim)
141
+ self.recursive_reflection = RecursiveSelfReflectionLayer(embed_dim, reflection_dim)
142
+ self.mohe_layer = MoHELayer(embed_dim, num_experts)
143
+ self.output_layer = nn.Linear(embed_dim, vocab_size)
144
+
145
+ def forward_with_memory(self, text_input, image_input, audio_input, symbolic_input):
146
+ x = self.hybrid_embedding(text_input, image_input, audio_input)
147
+ x, memory_state = self.memory_augmented_layer(x, memory_state)
148
+ x = self.quantum_attention(x)
149
+ x = self.dnp_layer(x)
150
+ x = self.recursive_reflection(x)
151
+ x = self.mohe_layer(x)
152
+ output = self.output_layer(x)
153
+ return output
154
+
155
+ # Parameters
156
+ vocab_size = 50000
157
+ embed_dim = 768
158
+ image_dim = 256
159
+ audio_dim = 128
160
+ num_heads = 12
161
+ reflection_dim = 512
162
+ num_experts = 4
163
+
164
+ model = ZeusModel(vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts)