--- license: apache-2.0 tags: - function call --- XAgentLLaMa is a collection of fine-tuned generative text models ranging in scale from 7 billion to 34 billion based on Llama 2 and Code Llama. This is the repository for the 34B fine-tuned model, optimized for XAgent with strong function call ability. ## Warning: This is a preview version of the model, does not stand for final quality. We collect around 300K pieces of data and fine-tune Code-Llama 34B with 48 A100 GPUs. More details will be released later. This model is trained with a special function call format, and should be used with [XAgentGen](https://github.com/OpenBMB/XAgent/tree/dev/XAgentGen) to get best performance. ### XAgentGen input format: ```json "messages":[ { "role":"system", "content":"...." }, {...} ], "global_arguments":{ // Optional "type": "object", "properties":{ "k1":{ "type":"integer", "description":"..." }, "k2":{ "type":"string", "description":"..." }, ... }, "required":["k1","k2"] }, "functions":[// Optional { "name":"func1", "description":"...", "parameters":{ "type":"object", "properties":{...}, "required":[...] } }, .... ], "function_call": {// Optional "name":"func1" } ``` ### XAgentGen call output format: ```json { "global_arguments": { "k1":"v1", "k2":"v2", "k3":"v3", ... }, "function_call":{ "name":"func1", "arguments":{...} } } ``` If the json format of `global_arguments` is provided, the output will contains the `global_arguments` at any time.